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Tasks Completed:

• Analyzed and compared competing approaches to 'phototopoo_raphy'

• Implemented and compared cost functions for topographic recovery

• Implemented planet phototopography from shading and stereo

• Established accuracy through experiments with synthetic images

• Demonstrated that phototopography can yield quantitative information

• Establish robustness through experiments with real planetary image

• Developed recommendations for image taking strategy

• Ported the phototopography implementation from MATLAB to C

• Made the c language implementation available for anonymous FTP.

• .Made preliminary effort to apply new approach to other imaging tasks.

(This covers essentially all of the milestones listed in the original contract

proposal except for the extension to more than two images which was planned

for the third year).

Summary:

.Methods exploiting photometric information in images that have been devel-

oped in machine vision can be applied to planetary imagery. Older techniques,

however, always focused on just one visual cue, such as shading or binocular

stereo, and produced results that are either not very accurate in an absolute

sense or provide information only at a few points on the surface.

Integrating shape from shading, binocular stereo and photometric stereo

yields a robust system for recovering detailed surface shape and surface re-

flectance information. Such a system is useful in producing quantitath,e in-

formation from the vast volume of imagery being received, as well as in help-

ing visualize the underlying surface. (For additional background information
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please refer to the original contract proposal "Topography from Shading and

Stereo" by B.K.P. Horn and M. Caplinger.)

Methods for fusing two computer vision methods are discussed in Clay

Thompson's thesis and several example algorithms are presented to illustrate

the variational method of fusing algorithms. The example algorithms solve

the photo-topography problem: that is, the algorithms seek to determine planet

topography given two images taken from two different locations with two dif-

ferent lighting conditions. The algorithms each employ a single cost function

that combines the computer vision methods of shape-from-shading and stereo

in different ways. The algorithms are closely coupled and take into account

all the constraints of the photo-topography problem.

One such algorithm, the z-only algorithm, can accurately and robustly

estimate the height of a surface from two given images. Results of running the

algorithms on four synthetic test image sets of varying difficulty are presented

in Clay Thompson's thesis.

These results are further extended in Charles Yan's thesis, where spa-

tially varying albedo is introduced. Charles Yah also ported Clay Thompson's

MATHLAB code to C to make it more widely useable. The work was done on

a popular computing platform so that it is easily accessible to other workers.

The code isavailableby anonymous FTP.

For additional technicaldetailsplease consult the theses of Clay Thomp-

son and Charles Yah. Enclosed pleasefind a copy of Charles Yan's thesisenti-

tled "Planet Photo-Topography Using Shading and Stereo". We already sub-

mit.ted Clay Thompon's thesis "Robust Photo-topography by Fusing Shape-

from-Shading and Stereo," lastyear.

Overview:

Before investing serious effort in implemenation of one particular algorithm,

some preliminary work on selection of the approach to recovery of topography

was carried out. A variety of cost functions to be minimized were studied.

Some preliminary testing was carried out on a PC using MATLAB. While a

MATLAB implementation is slower than a c implementation, it is much easier

to change, debug, and experiment with. Hence development time is greatly

reduced.

We have developed and evaluated twelve different criteria functions. Ex-

periments were done on synthetic shaded images, where the "ground-truth"

is known accurately.

Extensive testing of all twelve different cost functions showed which are

the most robust and which lead to rapid convergence. Thorough testing





showed some dependence on initial conditions and strong dependence on light-

ing conditions and relative orientation of the two camera positions.

A systematic comparison of a variety of cost functions showed that all

of them converge on mo_¢: of the test cases, but that the "z-only" algorithm

converges fastest and has the lowest error in general. It also was able to recover

shape in the case of a particularly difficult image pair that the other algoritt_ns

could not handle. These results are docmnented in Clay Thompson's Ph.D.

thesis.

Charles Yan then ported Clay Thompson's .Mathematica code to C. Test-

ing on real image pairs followed. The algorithm was found to be sensitive to

errors in assumed light source position as well as camera geometry; which

is not too surprising. Mike Caplinger (then at Arizona State University in

Tempe, AZ) helped us debug the code for calculating source and viewing

directions in the transformed images that we worked with.

The results on some of the later image pairs were not as good as on the

first few that we worked with. Sometimes features in some part of the surface

are not recovered even though it stands out visually. In these cases we have

found that while the influence of shading is quite strong, contributions from

stereo information are weak--at least when far from the solution.

Charles Yah worked on resolving these issues and discovering the circum-

stances under which convergence can slow.

Finally we worked on applying similar techniques to other image analysis

problems of interest to NASA. Stanley Brown and Gideon Stein, for example,

worked on the estimation of optical flow in image sequences of Jupiter.

Analysis:

Different approaches to integrating information from shading and stereo have

been explored. There were some important questions regarding the form of

data representation that needed to be answered first.

Should the coordinate system be related to one of the two camera posi-

tions or "cyclopic"? Should there be independent representation for height

and gradient? (In the noise-free case one should be the integral of the other).

Should there be two depth-maps, or one for each camera? We found that the

'z-only' algorithm worked best and it requires a "c3"clopic" representation.

The tests indicated clearly that the remaining key problem is one of local

minima. On the synthetic data, excellent results were obtained when a rea-

sonable starting state was used. Convergence to correct solutions was rapid.

If no a priori information is available, convergence is not always assured. For-

tunately in practice, quite a bit of information is available about the surface

being viewed.
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\Ve have characterised what imaging situations make it easier to recover

shape and albedo and what Lighting conditions make it hard. The method

works better when the lighting conditions in the two images are different,

which is the opposite of what one finds with binocular stereo, where the usual

correlation method work only if the lighting is the _ame.

We explored locM shading recovery methods in an attempt to get good

starting values and hence avoid local minima. We attempted to get some cur-

vature information locally, even when height and gradient cannot be recovered

locally. Simple correlation methods can then be used to get a coarse depth

map by matching "curvature maps" rather than image brightness itself (Ob-

viously correlation methods on image brightness itself will not work, because

of the large difference in lighting conditions).

After careful testing of a number of competing algorithms, one was se-

lected that is the most robust--<onverging most to reliability. This and other

algorithms were tested on numerous synthetic image pairs which represented

various difficulty levels. In the process a lot was learnt about what combina-

tions of Lighting and viewing conditions made the problem 'ill-posed.'

After completing this investigation, the new algorithm was extended to

also deal with spatially varying albedo. Some sample synthetic image pairs

were generated assuming varying albedo. The extended algorithm correctly

recovered both shape and albedo.

Finally the algorithm was tried on a Viking image pair provided to us

by .Mike Caplinger (now working on the replacement for the ill-fated Mars

Observer). \Vhat appears to be a reasonable shape was covered, although

quantitative comparisons are not possible, since the "ground truth:' is not

available in this case.

Charles Yah has ported Clay Thompson algorithm into c on the Sun

workstation. He has also sought additional suitable Viking image pairs. De-

spite help from JPL, we have however not been able to identify which images

are of the sanae area (Somehow better search and cataloging methods are

needed for the huge data-base of space images).

We have done some further testing on the c code translation of the 'Shape

from Shading and Stereo' algorithms. This code has now been put up on the

Inter.Net for anonymous FTP SO that other reasearches can more easily gain

access to it. The FTP server is ftp. ai .mit. edu and the directory is/pub/yam.

The c implementation of the algorithm is described in Xiaojian (Charles)

Yam thesis entitled "Integrating Multiple Cues," while the original MATLAB

implementation is described in Clay Thompson's thesis entitled "Shape from

Shading and Stereo." The theses are available in the same directory.





Unfortunately, the demise of the Mars Observer last August has made

it impossible to continue with one of the planned stages of testing on real

images. NevertMess, Mike Caplinger is determining the utility of this algo-

rithm for future Mars missions, should the funding requested by NASA for

them be a'pproved by Congress (The MOC spare may be flown on a 1996

launch). A more immediate interest of his is in applying this approach to pro-

posed asteroid missions, where typically rather limited coverage is available,

and there is high interest in exploiting every cue available to get accurate

topographic information, even in areas where surface features needed for a

purely photogrammetric apparoach are lacking. Shading can fill these in with

relative depth information, while stereo provides the accurate absolute depth

information for isolated features.

We did some preliminary work on applying the new method for integrat-

ing multiple visual cues to other domains. In the work on topography, the

cues were shading and binocular stereo. Stanley Brown and Gideon Stein

looked at the possibility of applying a similar approach to flow estimation

on gaseous planets. While this integrated 'optical flow' algorithm works very

well on synthetic data, we have the usual work to do in figuring out how to

make it also work well on real data, where there are imaging artifacts, noise,

changes in albedo, and other unmodelled effects.

We were hoping to get some information from Timothy DoMing that will

let us determine how we can contribute to the analysis of Jupiter images in

the post Shoemaker-Levy 9 era. If the features created by the impacts persist

for several months and create local weather systems of some stability, then

the detailed flow maps that our algorithm may be able to provide ought to be

of interest.

But it appears that our funding under this contract has been terminated.

We had rather hoped that the unexpended funds could be used in the fall

1994 term to finish the study of the 'optical flow' application of the method.

Future Applications:

The new method has obvious applications to the recovery of planetary topog-

raphy. It combines the advantages of photoclinometry (recover; of fine detail

and ability to work without need for recognizable 'features') with the advan-

tages of binocular stereo (good absolute accuracy). Earlier work on 'Shape

from Shading' has made it clear that quantitative results can be obtained

that photoclinometry is not just for qualitative results and 'fly through' visu-

alization. The work here significantly strengthens the position that shading

information can provide accurate information on surface topography.

Specific future applications include:
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• Analysis of images from asteroid flybys, particularly where the coverage

may be limited by other mission objectives.

• Analysis of images from the 'Mars Recovery Mission' (MOC2 planned for

1996).

Mike Caplinger now at Malin Space Science Systems (MSSS) in San Diego is

looking into these applications already.

Theses and Reports:

• Thompson, Clay .'kL "Robust Photo-topography by Fusing Shape-from-

Shading and Stereo," Ph.D. Thesis, MIT, Department of 3_echanical En-

ginering. February 1993.

• Yan, XiaoJian (Charles) "Planet Photo-Topography Using Shading and

Stereo," S.M. Thesis, MIT, Department of Physics, December 1993.

The source code and a 'maker-fie' for the 'Topography from Shading and

Stereo' program may" be retrieved by ananymous FTP from :ftp. a±. mit. edu

(128.52.32.11) in directory /pub/yon. Charles XiaoJian Yan's thesis may

also be found there.

References:

Horn, B.K.P. Sz M.J. Brooks (1989) Shape from Shading, MIT Press, Cam-

bridge, MA.

Horn, B.K.P. & M. Caplinger (1990) "Topography from Shading and Stereo,"

Contract Proposal.





Topography from Shading and Stereo

Berthold K.P. Horn

Artificial Intelligence Laboratory, .Massachusetts Institute of Technology

Michael Caplinger

Department of Geology, Arizona State University

Abstract: ,_ethods exploiting photometric information in images that .have

been developed in machine vision can be applied to planetary imagery. Present

techniques, however, focus on one visual cue, such as shading or binocular

stereo, and produce results that are either not very accurate in an absolute

sense or provide information only at a few points on the surface. We plan to

integrate shape from shading, binocular stereo and photometric stereo to yield

a robust system for recovering detailed surface shape and surface reflectance

information. Such a system will be useful in producing quantitative informa-

tion from the vast volume of imagery being received, as we11 as in helping

visualize the underlying surface. The work will be carried out on a popular

computing platform so that it will be easily accessible to other workers.

1. Introduction

It would be very useful for users of image data to have automated means

of extracting accurate topography from images. Existing automated methods

are not able to robustly recover detailed surface shape. We propose to explore

the intimate integration of existing machine vision methods to recover topog-

raphy, and possibly also surface reflectance. This will be a demonstration of

the application of a particular machine vision paradigm to problems of data

reduction and visualization in the space sciences.

Present binocular stereo methods, whether correlation or edge-based,

cannot deal with large differences in foreshortening and lighting between the

two images. Conversely, so-called shape-from-shading methods cannot accu-

rately recover the lower spatial frequency components of the topography, and

may be misled by spatial variations of surface reflectance _. The two meth-

ods are complementary in that binocular stereo can provide sparse absolute

height data, while shading provides f-me detail. Furthermore, binocular stereo

cannot provide reliable information in areas where there is little texture, while

shading works best where the surface curves smoothly and has near uniform

reflectance properties.

l\Vhat we call reflectance variations here are often referred to as albedo variations--

we avoid the term "albedo," since some people at least consider this to be a

technical term with a meaning different from the one intended here.
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Recentprogress in shape from shading, multi-resolution grey-level match-

ing binocular stereo, as well as photometric stereo, suggests that robust meth-

ods may be designed that combine the available information to recover accu-

rate surface shape and reflectance information. This "fusion" of early vision

modules cannot, however, be done at a point where each module has already

generated its error-prone output. Instead, the available cues must be used in

an integrated way. The now classic calculus of variations approach to solving

early vision problems provides a means for achieving this synergism.

We will explore this new approach to integration of early vision mod-

ules in the context of the interpretation of multiple images of the same sur-

face area obtained from different viewpoints, possibly under different lighting

conditions. The result will be a system that can recover accurate, detailed

topographic information, as well as surface reflectance. T.his will greatly en-

hance the value of the voluminous image data now being returned to earth

from cameras on planetary explorer spacecraft, as well as earth observation

platforms and from cometary flybys.

2. Applications

The volume of imaging data being received is growing all the time. and there

is no hope of extracting topography from it via manual or semi-automated

methods except on a piecemeal basis.

Geophysical uses of topographic data, both on Earth and other planets,

typically invoh-e the study of the movement of material over the surface under

the influence of gravity. Such movement is both influenced by the existing

topography and the cause of topographic changes (as in erosion). The flowing

material can be water or other liquids, rock in mass movement, lava, ice, the

atmosphere, or inJxtures of these.

• Hydrology: For example, for the flow of water, the velocity of a flow

that created a channel can be calculated using empirical relationships

relating variables such as slope and cross-sectional area. The longitudinal

profile of a stream (the slope of the fluid bed as a function of position

downstream) reflects the nature of fluid processes occurring at the bed

and is a sensitive measure of both surface and sub-surface sources of

fluid. Such relationships have been used to explore both terrestrial water

erosion and the possible genesis by water of the martian channels.

• lklass movements: Mass movements, such as landslides and avalanches,

are caused when the gravitational force on a body of material overcomes

the forces (such as shear strength) that bind it. (Sometimes, gravity

is assisted by accelerations induced by earthquakes or other vibrations.)
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After such movement, the volume of material moved can be computed

directly from the topography, and its speed and rheological properties

estimated from slope relationslfips and the relief of specific features on

the surface of the flow.

• Volcanism: Lava also flows under the influence of gravity. Topographic

data can be used to determine the volume of extrusion and intrusion

(important in constraining processes that occur in the magma chamber),

as well as to determine rheological properties of flows from the appearance

of surface features. These rheological properties are in turn related to

chen_cal and mineralogical composition, eruption rate, temperature, and

other physical parameters of the lava.

• Glaciology: Ice, too, moves under its own weight. The slope of a

ice-stream'ssurface reflectsboth the underlying topography and the rhe-

ologicalbehavior of the ice,in particularitsvelocityand volume discharge

rate. The reliefof surface features also permits analysis of the ice depth

where it cam_ot be directly measured.

• Aeolian processes: The flow of the atmosphere over topographic fea-

tures is both controlled by their shape and contributes to their erosion

and modification; especially if solid material is carried by the atmosphere

in saltation or suspension. Knowledge of the topography can be used to

estimate the nature of the flow (that is, turbulent or laminar) and the

nature of material being carried by wind.

Other applications of topographic data, not related to geology directly, can

also be mentioned. Some are: (a) mission planning, both on the surface

and from aircraft and low-altitude satellites; (b) meteorological modeling: to

constrain the surface wind field and model the generation of turbulence. Note,

by the way, that much of the above applies to observations of earth also, not

only to other planets.

3. Background

A considerable fraction of the bits returned to earth by spacecraft sent to

explore the planets comes in the form of images. Presently the means to

obtain quantitative information from these images are largely restricted to

photogranxmetric methods and profile-based photoclinometric methods. Yet

a hmnan observer gets a wealth of additional qualitative information from

these images that suggest that it ought to be possible to extract more, using

advanced machine vision techniques. If detailed surface shape and reflectance

information can be recovered, it can be presented in a variety of ways to aid

in visualization using well-known rendering methods from computer graphics.
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We want to exploit this opportunity by applying the latest methods in work
on "early vision." First we review traditional methods of image analysis.

3.1 Photogrammetry

Photogrammetric methods permit the accurate determination of the posi-
tions of isolated points in three-dimensional spacefrom (typically manual)
spot measurementsof correspondingimages of well defined features on the
surface. This is a very important basic step in defining the surface, and in
recovering the cameraposition and attitude, but provides information at only
a small number of isolated points, which do not define the detailed shape in
between. Nevertheless,sound photogrammetric techniques are vital to the
determination of an accurate referencebody for use in cartography and in

determining the relative positions and orientations of exposure stations used

to obtain image pairs for binocular stereo [Horn 89].

3.2 Photoclinometry

Present photoclinometric methods permit the recovery of isolated profiles

across features that have special symmetries, such as circular craters, vol-

canic calderas, and linear depressions or grabens [Bonner _ Schmall 73] [Davis

et al. 82] [Davis & Soderblom 83] [Davis & McEwen 84] [Howard et al. 82]

[Lambiotte & Taylor 67] [Lucchitta &" Gambell 70] [Malin _z Da.nielson 84]

[McEwen 85] [Passe?" & Shoemaker 82] [Rowan et al. 71] [Tyler et al. 71]

[Watson 68] [Wilde?" 86] [Wilhelms 64] [Wilson et al. 84] (for a larger col-

lection of references on this subject, see [Horn &" Brooks 90]). Since these

methods cannot take into account cross-profile inclination, they will not pro-

duce accurate profiles if the cross-proNe inclination is non-zero. Hence such

methods are limited to areas that have the appropriate symmetry. Shape-

from-shading, basic to what is being proposed here, may be thought of as

"area-based" photocl_inometry. It permits the recovery of complex, wrinkled

surface shapes by using image information from a full two-dimensional re-

gion of the image, rather than merely along a line in the image. There is no

restriction to surfaces having predefmed syrmnetries (see section 4.2).

3.3 Correlation-based Stereo

There have been many attempts to automate the recovery of topograpt_c

information from two images using binocular stereo methods. Perhaps the
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oldest and most widely known are methods based on correlation. A wide-
variety of techniques, ranging from Fourier transforms to optical computing
have been employed to speedthe computation [Horn 86]. Such methods as-
sume that, locally at least, what appears in one image is a shifted version
of what appears in the other image. If, however, the surface is viewed from
quite different viewpoints, the foreshortening in the two images will be very
different and these methods will fail, since they are not designedto match
two waveformsthat havebeenstretchedby different amounts [Horn 83]. Such
methods are thus restricted to situations where the baseline-to-height ratio
is small. Unfortunately, the expected error in the determination of the dis-
tance from the camerato the surfacegrowsinversely asthe baseline-to-height
ratio--so thesemethods have not provenuseful in the interpretation of aerial
photographs, for example, where a large baseline-to-height ratio is purpose-
fully employed to get accuracy in the determination of height comparable to
the accuracy in the determination of the horizontal position. Furthermore, in
planetary exploration it is commonto havetwo imagesof the samearea taken
not only from very different viewpoints, but under very different lighting con-
ditions. Correlation-based binocular stereo is based on the assumption that
the patterns of brightness in the two imagesare the same and so cannot be
applied successfullyin this situation.

Of the dozensof attempts over the past twenty years to automate binoc-
ular stereo using this kind of approach,apparently the only one that comes
close to being useful is embodied in the so-called Gestalt photomapper. On
undulating terrain with sufficient texture and no confusing reflections from
specular surfacessuchaslakes, this machinecanproduce beautifully detailed
surfacetopography. It does,however,require considerableassistancefrom an
experiencedoperator in order to help it out in difficult areas. It also doesnot
work satisfactorily in areas of steep relief or where there is insufficient con-
trast in texture patterns. While the detailed inner workings of the machine
are proprietary, it is known that part of the reason that it works at all is
that it is not basedon blind correlation, but an iterative schemethat warps
the local surfacein a hexagonalpatch using a high-order polynomial. In this
fashion it can take account of the differencesin foreshortening, provided that
the initial guessis closeenough to the correct shapeto allow it to converge.

3.4 Edge-Based Stereo

To overcomethe problems of unequal foreshortening and unequal brightness,
there hasbeen considerablework on feature-basedbinocular stereo in the last
ten years. In this casedistinctive "features" of the images(such asrapid tran-
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sitions in grey level) are first extracted and then these features are matched
symbolically. The matching process is complex and requires representation of

the images at multiple resolutions. It does not lend itself readily to parallel

implementation.

The basic assumption in feature-based binocular stereo is that image fea-

tures correspond to distinguished surface features (such as terrain breaks)

and that their image position is not affected by vagaries of lighting and fore-

shortening. With low baseline-to-height ratio and similar lighting in the two

images, such methods can produce reasonable estimates of height along iso-

lated curves. The remaining surface is unknown and has to be somehow

interpolated from the sparse data recovered [Grimson 82]. TMs means that

in areas where there are few "features" very little is really known about local

surface topography.

4. Photometric Machine Vision Methods

In machine vision, a number of methods have been developed that exploit

the fact that a grey-level is a quantized estimate of image irradiance, and

that image irradiance depends on surface orientation, surface reflectance and

light source distribution. Such methods have shown promise in applications

to aerial photographs, satellite photographs of the earth and planetary im-

ages. We briefly review the relevant approaches here, noting that what we are

proposing now is an integration of these methods--but not one that merely

builds a system out of several existing modules. We are not proposing to

merely combine the outputs of various modules in some simple statistical

way. Instead, the calculus of variations approach is to be used to minimize

some overall error function. We believe that this is the way to obtain the

necessary synergism between different visual cues.

4.1 Photometric Stereo

Images of an object taken from the same viewpoint but under different light-

ing conditions can be used to recover surface shape. This is called Iohotome*-

tic stereo, in distinction to binocular s_,ereo discussed above [Horn et al. 78]

[Horn 86]. The basic idea is that local surface orientation on a more or less

smooth surface can be specified using two parameters (such as the slope in the

x-direction and the slope in the y-direction). A measurement of brightness

at the corresponding image point places a single constraint on the surface

orientation--not enough to recover it fully. To recover surface orientation,

various other sources of additional constraint can be exploited. Perhaps the
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easiestis the brightness,at the same point in an image, taken when the object

is illuminated differently.

With two images, two constraints are available--that is, it becomes pos-

sible to locally recover the surface orientation. The computation can even be

implemented in a lookup table indexed on the two grey-levels at the same

picture cell. The lookup table can be constructed using some theoretical pho-

tometric model and known illumination conditions, or it can be developed by

numerical inverting calibration data obtained from an object of known shape.

One can do even better if more than two images are available. If, for

example, the surface reflectance is spatially varying, then two images are not

sufficient to locally recover the three degrees of freedom, but three images will

do. Continuing in this way, if the photometric model has n unknown param-

eters that may vary from point to point, then (n + 2) images are needed to

estimate these parameters, as well as the two components of surface orienta-

tion 2.

4.2 Shape from Shading

Shape from shading is the recovery of surface shape from shading in a single

image. Shading is the spatial variation of image brightness resulting from

corresponding variations in surface orientations. The twenty year history of

work in this area is captured in a recently published collection of papers called

Shape from Shading [Horn _z Brooks 89]. This book also contains a complete

bibliography of the three hundred or so publications in this, and related fields,

such as photoclinometry--so we will keep the list of references short here. For

a quick introduction to the subject, see chapters 10 _ 11 in Robot Vi.,ion

[Horn 86].

In shape from shading the local ambiguity in surface orientation, de-

scribed above, is resolved by assuming that the surface "hangs together,"

that is, neighboring surface patches are not allowed to have totally unrelated

orientations. Put another w_,, if one were to walk in a closed path atop the

surface patches one ought to come back to the same height. Use of this addi-

tional constraint is, however, much more difficult than use of information from

a second image as in photometric stereo. It has taken a long time for theory

and implementation to mature to where these methods are really practical on

other than synthetic images and real images of relatively simple shapes 3.

"_There are limitations to this in the context of planetary imaging, since the light

source, at ]east over a short period of time, moves along a small circle on the

sphere of directions, and thus does not sample the space of all possible source
directions well.

3Even at this stage, question of existence and uniqueness of the solution are re-
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Nevertheless,robust methods that work on real images of complex, wrin-

kled surface have been developed in recent years [Frankot 8z Chellapa 88]

[Szeliski 90] [Zheng g: Chellapa 90]. An example of what can be done is the

surface recovered from a SPOT image of a hilly area east of Huntsville, Al-

abama by the new method in [Horn 90] (See scetion 8 and figures attached

at the end). A reasonable surface shape was recovered despite the fact that

the range of distinct grey-levels in the region of interest was only 19, that

the photometric function, the light-source position and the atmospheric state

were not accurately known, and that the image was noisy and appeared to

suffer from the effects of aliasing. The recovered shape did not reproduce the

lower spatial frequencies of the terrain very accurately, as expected. Never-

theless, a contour map obtained from a smoothed version of the surface looks

similar to the appropriate part of the USGS topographic map of the same

area. Conversely, fine surface undulations were recovered that do now show

up in the "generalized" topographic map.

Perhaps the earliest work in tiffs field can be traced back to [Pdnd-

fleisch 66], who found that very specialized assumptions about the surface

reflectance properties (namely that brightness is a linear combination of the

slope in the z-direction and the slope in the y-direction) allows one to estimate

a profile of the surface by simple integration. Some recent work also uses this

assumption, which dramatically simplifies the problem [Pentland 88]. But

this is not a realistic assumption, nor is it desirable [Horn 70]. The reason

is that the recovered profiles are not connected to one another, each can in-

dependently float up or down with respect to its neighbor, so that there is

tremendous ambiguity in the recovered surface.

If surface slopes are small, then reflectance properties may be locally lin-

earized and the above used as an approximation. It has been found that more

general purpose shape-from-shading methods work particularly well when the

slope excursion are small [Kirk 84, 87].

Shape-from-shading suffers from some of the same limitation as photo-

clinometry, since it is also based on an assumed known photometric function.

However, since information from a two-dimensional region is used in a least-

squares approach, the effects of image noise and errors in photometry tend to

be suppressed. Conversely, photoclinometry is limited because varying surface

reflectance along a profile cannot be distinguished from changes in brightness

due to surface orientation. When a two-dimensional patch is considered, on

the other hand, such variations lead to inconsistencies that can be detected

and at least used to flag the area as suspect. Hopefully we will learn more

ceiving considerable attention--as are issues of what kind of boundary conditions

might be needed. These do not concern us very much here, since we know that

there is a solution, and we can often get a good first estimate of it.
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about this in future to actually be able to recover both shape and surface
reflectance--although at this stagethis doesnot look too promising sincethe
problem appears to be underconstrainedwhen working from a single image.

4.3 Grey-level Matching Stereo

Peoplehave little difficulty interpreting stereopairs of smooth surfaces lack-

ing the obvious "features" needed by present feature-based binocular stereo

methods. As a result, there has been considerable interest in new methods

that have been developed to directly match grey-levels, or information derived

directly from grey-levels using local operators [Gennert 86] [Barnard 89]. Such

methods hold the promise of providing dense surface information, although

they have to overcome the problems inherent in the assumption that a given

point in the scene will yield similar grey-levels in the two images. It is known

that such methods cannot work on a single level of resolution or they will

immediately get locked into a local minimum resulting from inappropriate

matches between the two images. Multi-resolution techniques are needed to

soh'e this problem.

5. Proposed New Method

There has been quite a bit of work recently on sensor "fusion" and early vision

module "integration," driven by the lack of robustness of individual modules.

However, most of this work either uses the results of one module to constraint

the operation of another, or simply combines the results of several module us-

ing some simple least-squares weighting function. Neither of these approaches

has proven particularly useful. We propose instead to integrate the modules

much more intimately. Over the past ten ),ears, a new approach to machine

vision has arisen, based on the calculus of variations, as pioneered in [Horn

Schunck 81] and [Ikeuchi & Horn 81]. Typically an error functional is defined

that has several component penalty functions that allow one to express a pref-

erence for solutions having certain properties, such as smoothness. This helps

one deal with what would otherwise be underconstrained or ill-conditioned

problems.

V/hat we propose to do is to build an energy fm_ctional that contains

penalty terms for errors in shading in the left image, errors in shading in

the right image and errors in matching left and right image. We will then

have to find the equations governing the resulting variational problem and

develop methods for iteratively obtaining a solution to a discrete version of

the resulting partial differential equations. The hope is that the problem can
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be formulated in such a way that the not inconsiderable investment in work

on the latest shape-from-shading system [Horn 90] can be somehow carried

over into the new system for shape from shading and binocular stereo.

Initially the main concern will not be computational efficiency, except

in so far as to avoid methods that will not later lend themselves to speedup

using numerical approaches such as multigrid and gradient descent methods,

or massively parallel hardware such as the Connection Machine. On a low-end

work-station we do not expect to be able to process large images in a short

time. The focus will be on developing a sound mathematical approach first.

We do plan, however, to incorporate, as soon as possible, ideas on high speed

implementations of the iterative algorithms being pursued by [Szeliski 90]

[Zheng k Chellapa 90].

The resulting system will be tested both on synthetic image pairs and

real image pairs. The reason for working with synthetic image data first is

that this is the only situation in which "ground truth" is known absolutely.

But of course a system that only works on clean, noise-free synthetic data is

of little interest, so test will have to be made on real data also. We propose

to do this first with satellite images of the surface of the earth, again because

the "ground truth" is more readily accessible to us in this case. Finally, the

system will be tested on existing planetary images.

5.1 Limitations on Accuracy

As mentioned before, shape-from-shading methods can provide fine detail,

but not accurately reproduce the lower spatial frequency undulations of the

terrain. Conversely, binocular stereo can give good spot absolute height mea-

surements, but cannot provide dense coverage of the surface, particularly in

areas without sufficient texture. We expect that the integration of these two

modalities will overcome the short-comings of both method. There will, how-

ever, still be linfitations resulting from short-comings of the imaging systems

and limited knowledge of surface photometry.

In profile-based photoclinometry, the effects of errors in photometry are

severe, since the measured brightness is directly translated into surface slope.

There is no way locally to tell the difference between a change of brightness

resulting from a spatial variation in surface reflectance and one resulting from

a change in surface orientation. In area-based shape-from-shading, informa-

tion from a two-dimensional image region is used, and certain errors tend to

cancel out. At the very least, the inability to reduce the error functional flags

the solution as suspect. Furthermore, when this method is integrated with

binocular stereo, it can be expected that the lower spatial frequencies in the
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reconstruction will be largely controlled by the stereo data and so the effects
of errors in photometry will be greatly reduced.

Most of the imagery weproposeto work with wasacquired using vidicon-
basedcamerasand somay sufferfrom poor radiometric calibration, non-linear
response,spatially non-uniform responseand geometricwarping. Even though
attempts are made to removetheseeffectsthrough careful pre-processing,we
still expect that the results obtained from these images will be inferior to
those possible in future with CCD-basedcameras.

6. Proposed Work

The proposed work can be divided into six components:

6.1 Application of Photometric Stereo

To become more familiar with photometric properties of planetary surfaces,

and to explore the potential for simultaneous analysis of multiple images of the

same surface, we propose to start with photometric stereo analysis on images

taken with different lighting conditions but from essentially the same exposure

station. It will be best at first to work with images obtained from a totally

static platform. For this reason we would like to start with certain Viking

lander images. We will first assume a photometric function (such as some

popular combination of Hapke, Minneart, Lonunel-Seeliger, and Lambertian

models) and try and recover surface orientation and surface reflectance from

three images. We will then work backwards from a cMibration object with

approximately known surface shape to a photometric function, possibly using

many more than three images. Once the lookup table has been constructed it

can be used to interpret the rest of the scene. Numerical photometric infor-

mation obtained, using the same sensor as that used later in measurements

of shape, is likely to be much more useful than that provided by an arbitrary

analytical form--except in so far as that existing analytical forms may be

helpful in bridging gaps in measurements and smoott_ing out noise.

We realize that the photometric properties of surfaces at different scales

are typicMly very different, so that the detailed results on close range imagery

will not apply directly to images taken from orbital distances. Yet the prin-

ciple involved is the same, and having images taken from ezactly the same

point enables photometric stereo analysis.
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6.2 Photometric Stereo and Binocular Stereo

We plan next to investigate the integration of photometric stereo (same position--

different lighting) with binocular stereo (same lighting--different position).

This promises to be easier to achieve than our ultimate goal of integrating

shading and binocular stereo. At the same time we expect to learn valuable

lessons from this exercise since some of the same mathematical tools and pro-

gramming techniques come into play. We expect that even here we will need

to develop suitable multi-scale algorithms to overcome the problems of local

minima resulting from stereo mismatches.

It should be pointed out that integration of photometric stereo and binoc-

ular stereo on close-range image sets may have applications to autonomous

vehicle control, since shapes of the surfaces in the environment can be recov-

ered, as well as their surface reflectance patterns. It is quite likely that surface

recovery using such integrated methods will involve less complex computations

than those from binocular stereo alone 4.

6.3 Application of Shape from Shading

We then propose to apply the latest shape-from-shading method to recovery

of shape from existing imagery such as certain Viking Orbiter images. \Ve

plan also to work on the more complex problem of "whole disk" shape from

shading using images of Deimos. This is more difficult because the boundary

constraints on slope are harder to integrate--since slope becomes infinite on

the occluding bom_dary.

6.4 Shading and Stereo--Similar Lighting, Similar Viewpoint

Next, we come to the heart of the work proposed here, the integration of

shape from shading and grey-levelmatching stereo. We propose to firstwork

on satelliteimages of the earth, since we have access to reasonably accurate

ground truth in this case. We also willinitiallyselect situationswhere the

view points are not too wildly different,surface cover isfairlyuniform and the

lightingissimilarin the two images (forexample, using a stereopair of SPOT

40n the other hand, for a rapidly moving platform, integration of direct motion

vision and binocular stereo is ultimately likely to be more useful still. We do not

propose here to work on this, although we expect that a similar approach can

be taken to integration of direct motion vision methods and grey-level matching
stereo.





6. ProposedWork 13

imagesof a hilly tree-coveredregion eastof Huntsville, Alabama)5. The main
part of the proposedwork will be the developmentof the mathematical model
and the computer implementation of the algorithm to solve this problem.

6.5 Shading and Stereo--Different Lighting, Different Viewpoint

Finally, we propose to extend the integrated shading and binocular stereo

approach to harder cases, where surface reflectance may vary, viewpoints may

be widely spaced and illumination very different in the images. This in essence

will require an integration of photometric stereo methods with shape from

shading and binocular stereo. We hope that the approach can be extended

to certain \%yager images where the photometric situation is more complex

than on the rocky planets of the inner solar system.

6.6 More than two images

Once we have formalized the techniques for integrating shape from shading

and binocular stereo in two images, we will consider the solution of problems

were more than two images taken from different viewpoints under different

lighting conditions are available. \Ve expect that the additional constrmnt

provided will make solutions even more robust, provided one can develop a

procedure to gets close enough to the solution so convergence is guaranteed. In

this situation integration of methods from all three areas: shape from shading,

photometric stereo and binocular stereo will be appropriate.

6.7 High Speed Implementation

We expect initially to work with relatively small images or parts of images

in order to allow debugging with a reasonable turn around time on a small

workstation. Until we have solved the underlying mathematical and numerical

problems, and demonstrated reasonable algorithms, we will not place great

emphasis on implementations that buy speed in return for complexity. Fi-

nally, however, for the results of this work to be useful on high resolution

images, attention will have to be directed to methods for reducing the num-

ber of iterations required, such as multigrid and gradient descent approaches

[Szeliski 90] [Zheng & Chelaapa 90].

5We may also try to work with NOAA polar orbiter images here, since they provide

stereo coverage at considerably lower cost, but expect that the extremely low

resolution side-lap stereo coverage will lead to quite unimpressive results.
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7. Requirement and Deliverables

To do what we proposed to do above, we will need access to the indicated

image sources. To summarize:

• Viking Lander images (for the initial photometric stereo work).

• Viking Orbiter images of the Martian surface, first for application of the

existing shape-from-shading algorithm, and later for further testing of

the new integrated Mgorithm.

• Viking Orbiter images of Martian satellites for whole-disk shape from

shading.

• SPOT earth images for usable quality integration of shading and stereo.

• Voyager images for work on images with more difficult photometry.

7.1 Hardware and Software

For this work to have a impact on the planetary science community it will

have to be available on a widely-used platform--we cannot expect others to

re-implement what is going to be a non-trivial software system. Presently the

latest shape-from-shading work is implemented in Common Lisp on a Symbol-

ics Lisp Machine. This machine has a software environment very conducive

to rapid prototyping and debugging of software, but it is not widely avail-

able. We propose to do all future work in the programming language C on a

SPARC station from Sun Microsystems. To this end, we propose to acquire

the following hardware:

• Graphics SPARC station from Sun Microsystems.

• CDROM drive to read the proposed Voyager image library.

• DAT drive to read Viking Orbiter data and store other image libraries.

• Scanner for images that are not available in machine readable form.

We have file servers_ laser printers, standard 9-track tape drives and software

in place to support the work we plan to do. We also have a high quality stereo

viewer (although no stereo-comparator or other means of accurate image mea-

surement). We do not have a means of high quality hard-copy graphics output,

but expect that for demonstration purposes half-tone output on well-tuned

laser printers will be adequate.

We will have to acquire at least one SPOT image stereo pair for this

work. Travel to one conference per year should be covered so we can present

the results of the work. We will also need to cover travel for one trip from

MIT to ASU, and one trip from ASU to MIT per year to facilitate detailed

collaboration on this project.
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7.2 Technology Transfer

By working on a popular platform, using a widely known programming lan-

guage, we provide for ease of transfer of what we develop to other sites. The

photometric stereo program, the new shape-from-shading program and the

integrated shading and binocular stereo system will all be made available. If

the integrated photometric stereo and binocular stereo system turns out to

work well and be useful (other than as a stepping stone), it too will be made

available. This proposal does not, however, request resources that would be

needed to provide software support beyond documentation supplied with the

programs and technical papers describing the algorithms.

8. Illustrations of Previous Related Work

We attach two representative examples of earlier work on the application

of shape-from-shading methods to images of interest to planetary and earth

scientists.

Shown in Figure la are two images of Deimos taken by Viking Orbiter

(339B02 _ 42SB22). In Figure lb are shown corresponding surface recon-

structions using an implementation by Michael Caplinger of an older shape-

from-shading algorithm [Horn &: Brooks 85]. Brighter areas are closer to the

viewer than darker ones.

Shown in Figure 2a is a stereo pair of portions of two salellite images

of Monte Sano State park east of Hunstville, Alabama. In Figure 2b is a

synthetic stereo pair constructed using the topography recovered by a shape-

from-shading algorithm developed recently by Berthold K.P. Horn [Horn 90].

The input to the algorithm was the left sub-image of Figure 2a (the right sub-

image was not used). Figure 3a is a portion of the USGS topographic map

covering the area, while Figure 3b is a contour map created from a smoothed

version of the digital terrain model recoverd using shape from shading.

These examples, while based purely on shape from shading, at once illus-

trate the promise of such approaches and also show some of the short-comings

discussed earlier, wt'Ach we plan to overcome by intimately integrating binoc-

ular stereo with shape from shading.

9. Summary

We plan to intimately integrate shape from shading and grey-level matching

stereo to obtain robust recovery of surface topography and surface reflectance

from multiple images of planetary targets. In preparation for this, we will (a)
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demonstrate photometric stereo applied to images obtained from the same
view point but under different lighting conditions, (b) demonstrate the lat-
est shape-from-shadingalgorithm on real planetary images, (c) demonstrate
the potential for recoveringsurface topography and surface reflectance from
satellite imagesof the earth and other planets.

The main contribution of this work will be a considerableincreasein the

value of existing and planned planetary imagery resulting from the ability to
get important quantitative information in an automated fashion. Amongst
other things, this will enablequantitative analysisand Better means of visu-
alizing the data.
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11. Timetable and Milestones

11.1 First Year

Code photometric stereo method and numerical derivation of lookup table

from "calibration object." Apply to Viking Lander Images. Determine

photometry and shape. Compare with existing depth maps obtained

manually using binocular stereo.

Formulate problem of integrating photometric stereo with (grey-level

matching) binocular stereo. Experiment with proposed approaches on

Viking Lander images.

Recode the latest shape from shading algorithm [Horn 90] for the work-

station. Apply to Viking Orbiter images of surface features and to whole-

disk images of .Martian satellites.

11.2 Second Year

Solve problem of integrating photometric stereo with (grey-level match-

ing) binocular stereo. Find robust solution method. Experiment with

solutions on Viking Lander images.

Formulate problem of integrating shape from shading and binocular stereo

for similar lighting and similar viewpoint case. Solve resulting variational

problem. Develop discrete appoximation and iterative scheme for solving

same. Experiment with SPOT satellite images.

Develop methods for detecting areas with spatial variations in reflectance.

11.3 Third Year

Formulate problem of integrating shape from shading and binocular stereo

for different lighting and vastly differing viewpoint case. Solve resulting

variational problem. Develop discrete appoximation and iterative scheme

for solving same. Experiment with Viking Orbiter images.

Integrate shape from shading, photometric stereo and binocular stereo to

increase robustness when spatial variations in reflectance are large.

Extend the integrated method to deal with more than two images. Ex-

tend to situations where the photometry is more complex (icy surfaces

instead of rocky surfaces).
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12. Hardware Choice Justification

We need to implement the algorithms coming out of the research and devel-

opment proposed here on some widely available platform, having a C com-

piler and running Unix. The Sun SPARC Station has adequate power and

is inexpensive, being the cheapest in their line of work stations. The pack-

age containing some local storage (105 Mbyte disk) will be required in order

to reduce network traffic in accessing images being worked with, as well as

image-registered data such as digital terrain models, gradient images and sur-

face reflectance maps.

We wish to use the version of the workstation that has a 19 "_' monitor

and grey-level capability, since we will be displaying images and intermediate

results of the computations frequently (Dithering of images on a binary display

screen is slow and does not yield results that permit assessment of the quality

of the computation). FinMly, the graphics version of this low-end system has

somewhat higher speed for the common operations used in visualization of

the data in comparison with the rather slow rate for such operations on the

basic color SPARC station.

\¥orking with multiple images and registered arrays of height, surface

orientation, reflectance and disparity information, will be greatly aided by

having 16 Mbytes of memory, given that a some part of the memory will be

taken up by the operating system and the complex software environment we

will be constructing.

To read some of the image sources (such as the Voyager image library) we

need a CD!ROM drive (which is read only, of course). To read other images,

and to permit exchange of images between the two principal investigators and

others, we also need a 4ram DAT drive (which is read/write).

Finally, there are situations where it is not feasible to obtain an image in

machine readable form_ yet a high quality photographic print is available. To

deal with this situation we would like to use a full grey-level flat-bed scanner.
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Chapter 1

)

Introduction

Machine vision is the study of algorithms and techniques for analyzing and processing

visual inputs so as to determine one or more properties of the external world. Fol-

lowing Marr's [15] Classification, vision algorithms can be grouped into one of three

levels by the processing and analyzing stage: Early vision, Intermediate vision, and

High level vision. I will concentrate on Early Vision which seeks to work with raw

image data and to produce an estimate of some property or properties of the 3-D

world. An example in this field is Shape from Shading algorithm which estimates the

shape or relative depth of an object from a gray-level image, as discussed in "Robot

Vision" [8].

Machine vision is closely allied with three fields, image processing, pattern classi-

fication and scene analysis. Machine vision differs from image processing in that the

result is not a better or enhanced image, not a new image, but an estimate of some

external properties of the 3-D world. Pattern classification and scene analysis are

associated with intermediate vision and high level vision. Unlike computer graphics

which tries to produce a realistic image from a stored model of the world, machine

vision tries to produce a realistic model of the world from an image. In this way, a

vision system (camera+algorithm) can be described as a sensor that converts a large

number (N 2 on an N-by-N grid) of measurements into a representation of the exter-

19
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nal world, for example, height information of a N by N pixel image. Vision system is

complex because it process information in 2-D in contrast to most system processing

1-D or 0-D information. Its complexity also stems from input in 2-D and the result

in even higher 3-D. In another word, it is a synthesi,_ process rather than a deduction

process. We can not at this stage to build a "universal" or " general purpose" vision

system. Instead, we address ourselves either to system that perform a particular task

in a controlled environment or to a model that could eventually become part of a

general purpose system.

In this thesis, I will describe a machine vision algorithm that combines the methods

of three successful early vision algorithms, its implementation and the performance

on real images, namely Viking Mars Survey images. The algorithm seeks to determine

the topology of a planet from two images, which are taken at different time by two

cameras at different location with different lighting conditions.

1.1 Background

Over the past two decades many early vision algorithms have been developed. Most

notably, Algorithms have been developed for edge finding [16], Binocular Stereo [17,

3], Photometric Stereo [28, 20], Shape from Shading [8, 11], Shape from texture

[13], Structure from Motion [251 and Optical Flow [10]. These algorithms, for the

most part, are very sensitive to noise in the image(',_). They seem to perform well on

synthetic images, but perform poorly on real images. In order to make the algorithms

more robust, some researchers are moving toward integration or fusion of two or more

of these methods. The typical fusion paradigm is to explore physical constraints that

are present between the solutions of the candidate methods. These constraints are

then used to combine the outputs of each method to produce a fused solution to

the vision problem. The hope is that by combining the information available from

disparate methods, a more robust vision system can be formed.
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Figure 1-1: Example sketch of cameras and light source in a pair of Viking images

The vision algorithms mentioned above fall into one of two camps: those algo-

rithms that are based on variational formulations, such as Horn's Shape from Shading

algorithm, and those algorithms that are feature based, such as the Marr and Poggio's

Binocular Stereo algorithm. Variational methods usually result in an optimization

problem while feature based methods usually employ direct search methods. Both

approaches have been successful for certain problems.

The type of algorithm affects how easy it is to integrate or fuse more than one

algorithm. In general, the feature based methods are hard to fuse since the algorithms

are highly specialized and tuned to each task. On the other hand, the variational

methods perhaps can be easily fused by simply combining the cost functions from

disparate methods intelligently and forming a combined optimization problem. In

the discussion below, I will present a method based on variational approach.

The problem on hand is to fuse the Shape from Shading, Binocular Stereo, and

Photometric Stereo algorithms so as to obtain more accurate and robust estimates of

the surface topography. Following its originally proposed name 1, I call the resulting

algorithm Depth from Shading and Stereo (DFSS). The research here mainly is con-

cerned with the robustness, efficiency, and performance of the z-only DFSS algorithm

in dealing with real images.

This research is motivated by a problem proposed by NASA. NASA is interested in

determining the surface structure (or topography) of the planets in our solar system.

1Depth from Shading and Stereo was proposed and developed by Clay Thompson in his 1992
Ph.D. thesis [24]
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Figure 1-2: Example image pair from Viking Space ?roject. The difference in shading

is clearly shown, due to the different shading conditions

Toward this end, NASA has used its explorer probes (e.g. Viking and Voyager) to

obtain images of the same patch of surface on a planet from two different, but known,

locations (see Figure 1-1). Since the images are tak_.'n at different time, the sun is not

in the same position relative to the planet or the c._mera. This results in the images

often being radically different from each other. (see Figure 1-2) This means none of

the existing algorithm can handle the problem.

The importance of this property becomes clear when you compare this situation

with the assumptions of several Early Vision algorithms. Binocular stereo algorithms

usually assume that the two images only differ b_" an offset (called disparity) that

is caused by the projection of a 3-D object. This implies that the images should

look very similar. As mentioned above, the NASA Viking images do not meet this
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assumption, hence the normal Binocular stereo algorithms will fail on these images.

Photometric stereo algorithms, on the other hand, assume that the images were

taken from the same camera position but with different light positions. This implies

that the corresponding points in each image are the projection of the same point in

the scene. Again, the NASA Viking images do not meet this assumption, and the

Photometric stereo algorithms will not work.

Only the Shape from Shading algorithms can be used with NASA Viking images,

except that the images must be processed one at a time. This results in two different

interpretations of the planet's surface topography.

The NASA Viking images are thus a natural choice for the investigation of fusion

techniques. The Depth from Shading and Stereo algorithm I have implemented will

incorporate the three modules mentioned above into one.

1.2 Planet Photo-Topography

The planet photo-topography problem in this thesis seeks to determine the topology of

a planet's surface based on two images of the planet, taken from two different vantage

points at two different time, as shown in Figure 1-1 and Figure 1-2. As discussed in

previous section, no ready algorithm can be applied to this problem. However, it bears

great resemblance with some well understood and developed algorithms, specifically,

Binocular Stereo, Photometric Stereo, and Shape from Shading.

Planet photo-topography has certain similarity to Binocular Stereo. Unfortu-

nately, it is more complicated than stereo vision in two major ways. First, The

images are typically taken at two different time and position; Second, the distance

between the two camera position are usually large and the camera directions are dif-

ferent. This means two different light source and camera positions and directions. As

the result, The two images might look quite different from each other, even though

they are images of the same surface patch, see Figure 1-2.
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Contrast to this, Binocular image pairs are usually taken simultaneously, from

positions that are near to each other, and with the same lighting. The images look

very similar except for a relative shift (i.e. disparity) of objects due to their distance

from cameras. If the disparity for all points in the image and the relative distance

from the cameras is known, then the depth of the objects can be computed directly.

The images are similar, so most stereo algorithm determine the disparity by trying to

match features in one image with features in the other. Unfortunately, this approach

won't work for planet photo-topography images.

Planet photo-topography also shares some aspects with Shape from Shading prob-

lem. Shape from Shading takes a gray-scale image of a surface and determines the

surface topology by exploiting the Shading information in the image. Shape from

Shading requires that the surface reflectance properties to be know. Assuming the

reflectance properties are known, we could use a Shape from Shading algorithm to

estimate the surface topology from each of the planet images. Unfortunately, the

surface estimates based on each image will be different. They may not even be sim-

ilar. Worst of all, the surface estimates from ca& image may not have the same

orientation; one could be concave while the other is convex.

Planet photo-topography also has aspects in common with Photometric Stereo

problem. A Photometric Stereo takes two images of the same scene with two different

lighting conditions. The cameras is not moved between images. The result is two

images that look different but where the correspon:tence is known explicitly. If the

light positions are far apart enough, it is possible to determine the surface orientation

directly. For Lambertian reflectance, two images can constraint the surface orientation

to two possible values at each point.

The NASA Viking images are based on two different light source positions and

directions. Like Photometric Stereo, the two light ,ources can constrain the surface

orientation, if the correspondence is known. But the correspondence is based on

Binocular Stereo. Thus planet photo-topography, Photometric Stereo and Binocular
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Stereo are closely linked.

1.3 Viking Project, Planet Image Data

Digital image data from the Viking Mission to Mars, NASA's Planetary Data Sys-

tem(PDS), have been available. Through the Geosciences Discipline Node at Wash-

ington University, the Image Node at the U. S. Geological Survey, Flagstaff, Ari-

zona and the Jet Propulsion Laboratory, the digital archive of images acquired by

the Viking orbital Visual Imaging Subsystem (VIS), including the Experiment Data

Record (EDR), are placed on compact read only optical disk media (CD-ROM).

1.3.1 Viking Mission

The Viking Mission consisted of four spacecraft: two identical orbiters and two identi-

cal landers. One of the orbiter experiment was the Visual Imaging Subsystem (VIS),

which acquired the images that are used in this thesis.

The Viking orbiter spacecraft operated in orbit around Mars from 1976 to 1980.

The orbiter imaging systems imaged all of the terrains on Mars, collected some color

and stereo images, and made observations of Phobos and Deimos. Some image se-

quences acquired by the VIS experiment include systematic medium and high resolu-

tion coverage of large portions of the surface, stereo images, observations of Phobos

and Demios, color images of the equatorial regions, observations of the polar regions,

and monitoring dust storm activity.

1.3.2 Viking Orbiter Visual Subsystem

Each Viking Orbiter was equipped with two identical vidicon cameras, called the

Visual Imaging Subsystem (VIS) [26], [14], [1]. Each VIS camera consisted of a tele-

scope, a slow scan vidicon, a filter wheel, and associated electronics. A digital image

was generated by scanning the vidicon face plate. A full resolution, uncompressed
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Viking orbiter image consists of an array of 1056 lines with 1204 samples per line.

The images then transmitted back to earth station. The images were radiometrically

and geometrically calibrated and stored on tape. Subset of the images are distributed

on CD-ROM.

1.4 Related Research

The algorithm discussed here is mostly related to the works of Horn [12], [9], [8],

[11], Gennert [5], and Szeliski [21], [22]. Variational (least squares)approach is based

significantly on the work of Horn [11], [10], [19]. The Shape from Shading part is

build upon the work of Horn [11], Szeliski [22]. The stereo part is based on the gray-

scale stereo algorithm of Gennert [5]. Hierarchical basis functions of Szeliski and use

conjugate gradient optimization as do Leclerc and Bobick. This work also has close

relation to the work of Hartt and Carlotto [6], [7], [27], and McEwen [18].

The Depth from Shading and Stereo was proposed and developed by Clay Thomp-

son in his PH.D. thesis, [24]. In his thesis, Thompsc,n proposed a fusion method with

variational technique based on Shape from Shadi:ag and Stereo. A cost function

combined Shape from Shading and stereo with smoothness regulated term is used.

Conjugate gradient optimization is performed to estimate depth information. Test

on synthetic images show z-only algorithm is the be:_t performed and the most robust

method. I will discuss the details of z-only algorithm in chapter 2 and chapter 3. Test

on synthetic images are presented in chapter 4.

1.5 About This Thesis

In the following Chapters, I will lay the ground for l'!epth from Shading and Stereo by

discussing each underlying fused algorithms, Shape from Shading, Binocular Stereo

and Photometric Stereo, and presents z-only Depth from Shading and Stereo algo-

rithm's performance on synthetic test image pairs and real Mars Viking Space Project
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image pairs. In Chapter 2, I will discuss each components of DFSS algorithm, Shape

from Shading, Binocular and Photometric Stereo in detail. In Chapter 3, I will show

the formulation of DFSS algorithm in a variational approach. In Chapter 4, I will

present the result of running DFSS algorithm on synthetic images, to understand

its strength and weakness. Chapter 5 shows the performance of DFSS algorithm on

Mars image pairs from Viking Space Project. Chapter 6 is devoted to analysis of

various error and its effects on the algorithm's performance on real images. Chap-

ter 7 summaries and discuss issues in DFSS' merits, limitation, implementation and

its extension.

This thesis is organized for people with various backgrounds in vision field. For

people who are familiar with machine vision, they can skip to chapter 3. For those

who are familiar with DFSS algorithm, they can skip to chapter 5, and compare the

result on Viking images with that on synthetic images.





Chapter 2

Overvmw

In this chapter we discuss how images are formed and how they are represented by a

computer. Understanding image formation is a prerequisite for full understanding of

the methods for recovering information from images. The focus will be on coordinate

system, image generation process and photo-topography properties. In particular, we

will discuss Binocular Stereo, photometric stereo, and shape from shading. Finally, a

set of simplified equations aiming at photo-topography problem are summarized.

2.1 Coordinate System

An image is a two dimensional pattern of brightness. In analyzing the process by

which a three-dimensional world is projected onto a two-dimensional image plane,

we have to first set up the proper coordinate system. The most straight forward

description is that the surface represents a height function over some selected 2-D

domain., such as:

z= z(x,y) (2.1)

Image domain can be defined in two ways, the image-centered domain and the

object-centered domain. The image-centered domain uses the image coordinates as

28
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Figure 2-1: Domain System Choices

the fundamental domain and assigns the depth(or height) value to each surface point

that projects to each image position. The object-centered domain uses the object

coordinate system as the fundamental domain and assigns a surface depth(or height)

information to each point in the domain. (See Figure 2-1)

Once the domain is selected, we still have the freedom to choose between perspec-

tive and othographic projection.

2.1.1 Perspective Projection

Consider an ideal pinhole sits in between an object and an image plane (See Figure 2-

2). Since the light travels in straight lines, each point in the image corresponds to

a particular direction defined by a ray from the l:oint through that pinhole. This is

perspective projection.

The optical Axis thus defined to be perpendicular from the pinhole to the image

plane. A Cartesian coordinate system is setup with the origin at the pinhole and

z-azis along optical axis pointing to the image. The z component of the coordinates

of the image will therefore be negative.

For each point P on some object in front of the camera will appear P' on the
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llnl

:Image plane

Figure 2-2: Perspective Projection

image. (See Figure 2-2). Let r = (x, y, z) r denotes P, and r' = (x', y', f)r 1 denotes

P'. From geometry optics, we know:

)
r = -z sec cr = -(r./) sec (2.2)

where _ is the unit vector along the optical axis. The length of r' is

r' = f sec cr (2.3)

)

or

1 , 1
= r (2.4)

7 r r.i

l z' = .f, f is the focal length.



CHAPTER 2. OVERVIEW 31
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x' x and -- = y (2.5)
f z f z

2.1.2 Othographic Projection

Consider that if we put the image plane at z = z0, and define lateral magnification m

as the ratio of the distance between two points mea_:ured in the image to the distance

between the corresponding points on the plane.

f (2.6)
-- Z 0

where -z0 is the distance of the plane from the pinhole.

A small object at an average distance -zo will give rise to an image which is

magnified by m. Let the depth be the distance from the object to the camera. The

magnification is approximately constant when the depth range of the scene is relative



CHAPTER 2. OVERVIEW 32

small to the average distance. Then

z'=-rnx and y'=-my (2.7)

For convenience, we can set m = -1, and

' ' (2.8)x =x and y =y

This is the othographic projection. It can be depictured as the ray runs parallel

to the optical axis (See Figure 2-3).

If we choose image-centered domain, and orthographic projection is used, the

projection map is straightforward. However, if perspective projection is used, then

this mapping can become quite complex, for example, surface normal calculation. If

we choose object-centered domain, both perspective and orthographic projection are

straightforward. However, the projected points in general won't map to the center of

each pixel. Thus interpolation is needed to obtain values at each pixel.

2.2 Shape From Shading

2.2.1 Image Formation Process

Shape from Shading problem is to generate three dimensional topography information

from two dimensional image. It is crucial to understand how images are formed. This

process can be viewed as two stages, object radiance and image formation. This

process also depends on four factors:

1. object irradiance.

2. reflectance map.
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Figure 2-4: Image Formation Process

3. image projection.

4. image transduction.

2.2.2 Object radiance stage

The amount of light falling on a surface is called the irradiance. At each point ( on

the surface, and for each direction _, the irradiance distribution function is E((, _).

The amount of light radiated from a surface is called radiance. Obviously, the object

radiance depends on the object irradiance and the .,urface reflectance properties. The

surface reflectance properties is the physical charac:ter of the surface, independent of

the irradiance, and can be described by Bidirectional Reflectance Distribution Func-

tion (BRDF). x At the point _, the BRDF f(_, fi, _,, _) relates the brightness of the

surface patch with normal fi illuminated from the direction § and as seen from the

direction _,. Using these two distribution functions, the radiance function can be

written as:

2For more information on BRDF, see[8, p. 209]
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L(_, fi,¢) = I _ f(_, fi,_,, §)E(_, h)(_. fi)&o(h) (2.9)

where H is the hemisphere of possible light sources directions for the patch at

surface point _, and dw(_) is the solid angle subtended in the direction _. Representing

§ in spherical coordinates, above equation becomes

3

.J

L(_, fi,¢)lz i_ f_-/1= f(f, fi,9,_)E(f,h)sinOcos#dad$ (2.10)
_JO

Two common reflectance models are the Lambertian model and the specular

model. The Larnbertian model deals matter surface. An ideal Larnbertian surface

is one that appears equally bright from all viewing direction and reflects all incident

light, which means the BRDF is independent of source direction §, surface normal

direction fi and viewing direction 9. Follow this definition, we get

fLo.,,b.,;.,,(f, lp(() (2.11)
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where p(_) is the surface atbedo, or the fraction of light re-emitted by the surface.

Evaluate 2.10 for a Lambertian surface illuminated by a point source at infinity, the

surface radiance is

LL_mb_,.ti,,_(_,fi, 9) -- Ap(_)(60" fi)
71"

(2.12)

Specular model deals with metallic surfaces. All light from the direction So is

reflected into the direction 2(fi • So)fl - s0, so that the BRDF is

fsp_c_,_,(_,fi, _,s) = p(_)6(_', 2(h. So)fl - s0) (2.13)

For a point source at infinity, the surface radiance for a specular surface is found

to be

Ls,_,_r(R, fi, ";') = Ap(()6(_, 2(fi. i0)fi - _o) (2.14)

A radiance function representing most surface is a linear combination of these two

plus a constant ambient term, which models haze ard atmospheric reflection, as well

as the effects of a uniformly distributed light source

L - aLLambertian "t-/3L,p_,l._ + 3' (2.15)

where a,/3 and 3' are scalars so that a +/3 + 3' =: 1.

Many vision researchers prefer to use a representation of the surface radiance based

on a global coordinate system. This is called the Reflectance function. Given Known

surface properties and a known light source, the reflectance function, R(_, fi,_r) is

defined using the corresponding surface radiance vie a change in coordinates,

R((c,fia,9a) = L(_,fi,+) (2.16)

where _c, tic, and _'a are the surface position, normal direction vector, and view-
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ing direction vector.

2.2.3 Image Generation Stage

In earlier section, we introduced the perspective and orthographic projection. We also

need to know how the brightness of the image is affected by the projection. Assuming

perfect lens. the irradiance from a patch on object is

d 2

E(r) = L(_(r),fi,V(r))4(y ) cos_ 4 (2.17)

where L(_(r),fi,vir))is the radiance of the corresponding object patch, d is the

diameter of the lens, and (_ is the off-axis angle of the projecting ray. Here, 9 and _ are

functions of r via the projection from image points r to object points. Equivalently,

this equation can be restated using reflectance function instead,

rr d 2

E(r) = R(_(r),fi,_'(r))_(7) cosc( _ (2.18)

There is one more factor in image generation stage. Light will be converted into

digital signal, during the conversion, there is distortion of the image. The effect

can be removed by calibration so that the measured image irradiance can be related

to object radiance in a straightforward way. With a perfect calibration, the image

irradiance equation can be put into a very simple form,

E(r) = R(_(r),fi,v(r))

where the constant term and cos (_4 can be set to 1 during calibration.

(2.19)

2.3 Stereo

For normal stereo situations, the camera are close together and both pictures are

taken simultaneously or nearly so. The stereo images that result look very similar,
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mostly differing in a shift of objects in each image caused by perspective projection.

the difference in the shift of an object point in the ]eft image and the right image is

called the disparity. If the relative position of the cameras is known, and it is known

the correspondence relation of each pixel in the right and left image, it is possible to

determine the depth directly for the surface points 1hat projects to those pixels.[8]

To determine the depth directly from the dispaiity, See Figure 2-6. If the corre-

sponding points in each image map to rays intersect, 're can use geometry to determine

the depth of the point that is halfway between the rays at their closest approach.

First find the relationship between the two camera coordinate system, Suppose,

we know the position of the principal point of each camera in some global coordinate

system, P1 and P2, and we also know the rotational transformation matrices from

each local camera coordinate system to the global coordinate system, Ta and T2, the

coordinates of the point _ in the two camera coordinate system is
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(2.20)

By moving _ from the above equations and defining b = P2 - Pa, the relationship

between a point in Camera Coordinate System 1 and a point in Camera Coordinate

System 2 is

RI = T(-'b + T("T2R2 (2.21)

Now, determine the relationship between disparity and depth. Suppose we are

given image points, r_ = (z_, yl, f)r and r2 = (x2, y2, f)r (one in each image), that

correspond to the same surface point, then the best estimate for the surface position

can be found by finding the point on each ray (along rl and r2) where the distance

between the ray is minimized. That is the problem

min lib + tr2 - sr, l[2
$,t

must be solved where s and t are scalar parameters.

vectors are given on the same basis.

By differentiating the above equation with respect to s and t, setting the resulting

equation to zero, and solving, it is found that the minimum occurs when

(2.22)

For now assume all the

(ra. r2)(b- r,) - (r,. r2)(b, r2)
s=-

r 2(rl.r,)(r2,r2)- (r,. 2)

t = (r,. r2)(b, r,)- (r,. r2)(b, r2)

(rl"rl)(r2,r2) --(rl.r2)2

(r2 X b)-(r2 X r,)

]lr2><r,]l
(rl x b). (r2 x r,)

IIr × r, II
(2.23)

if rl, r2 and b are coplanar then the above set of equations is just a fancy repre-
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sentation of the sines.

The global position of the point halfway between the two rays at thee closest

approach is

P1 + srl + 2(b + tr2 - srl),

1 b 1 (T2r2 x T,r,) [(T2r2 x b)T_r, + (T,r, x b)T2r2]
= P' + 2 + 2 liT, r2 x T2r, H2

(2.24)

where P1, P2 and b are given in global coordinates and rl, r2 are given in the

appropriate local camera coordinate system.

The equations simplify greatly if r_, r2 and b are coplanar, the cameras are aligned

so that the optical axes are in the direction -_. and/,: is along b. The stereo geometry

is commonly assumed to exist for most binocular stereo algorithms. With these

restrictions, the above equation becomes

b

= P' + (z2 - z,)r, (2.25)

where rl and r2 are defined as earlier, and b "- (b,O,O) T. the quantity (z2 - xl)

in the above equation is the disparity mentioned earlier. Note that the disparity can

be mapped directly into depth only in the special case. For more general case, 2.24

must be used.

2.4 Photo-Topography

Now we have described image formation process anc: stereo system, we can formulate

the photo-topography problem.

What we know from the introduction of Viking Project in previous chapter, there

are two images of an area on the planet surface, taken at two different times from

two different positions and angles. The objective is to determine the topography of
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the planet surface.

The images in a photo-topography problem are taken from two different vantage

points (See Figure 1-1). The cameras are often far apart and has pictures that are

taken at different time. In this case, it is very likely for the two images to look very

different, this makes the correspondence problem very hard. As opposing the small

baseline disparity and the same position and time of two images.

The solution is constrained by geometry and the image generation process. Specif-

ically each image is constrained by the perspective projection equation, 2.4 and the

image irradiance equation, 2.19 and the stereo constrained equations 2.20.

Combining these equations we find that the photo-topography problem is con-

strained such that

E(')(rl)= R(')(_,fi,-T1r,)

E(2)(r2)= R(2)(_,fi,-T2r2) (2.26)

where

fTl-'(_ - P,)

rl = TI_,( _ _ P1)" T1 _.,

fT2-'(( - P2)

r2 = T2_,(_ _ P2)" T2z2
(2.27)

E0) and E0) are the image brightness measured in the first and the second cam-

eras respectively, and R 0) and R (2) are the reflectance maps based on the first and

second light source positions. As before, _ is the surface position in global coordinates.

It is important to review the assumptions behind these equations. The perspec-

tive projection equations assume perfect lenses and perfect knowledge of the camera

principal points and optical axes. the surface radiance equation assumes we have
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perfect knowledge of the surface reflectance properties, light source directions, and

all surface points as visible from both cameras(i.e., there is no self occlusions). The

simplified form of the image irradiance equation assumes we either have a perfect

sensor or we can perfectly calibrate the sensor to remove any abnormalities from the

sensor & lens combination. The stereo equations assume we know the relative posi-

tion and orientation of the two camera perfectly, the only assumption that are truly

artificial are the assumptions of perfect knowledge of the reflectance maps and the

the assumption of no self-illumination. With more careful measurements and more

expensive equipment, it is possible to approach perfect knowledge of other assump-

tions. The assumption that all surface points be visible merely restricts the roughness

of the surface that this research is applicable to.

2.5 Simplification

There are several simplifications that can be made to the equation in the previous

section to make them easier to solve.

2.5.1 Special Global Coordinate System

So far all the equations have been written for any global coordinate system. I would

like to restrict the equations to a particular global coordinate system, as shown in

Figure 2-7. This coordinate system is defined as below:

1. Place the origin of the global coordinate system half way between the principal

points of the two cameras.

2. Choose the 5a direction along the line connecting the two cameras, xa =

b/llbll.

3. Choose the iv in the direction of the average of the optical axis directions of

the two cameras projected into the plane perpendicular to Xa, then
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Figure 2-7: Global Coordinate System

_ = I1(_,- _," _a) + (_ - _. _a)ll (2.28)

4. Choose Ya in the direction of _.a x_a in order to create a right handed coordinate

system.

5. Also set up a virtual image plane with f = 1.

Then P, = -b/2, P_ = b/2, and b = (b,O,O) T.

2.5.2 Removing the View Direction Dependence

A common simplification for computer vision is the assumption of a Larnbertian re-

flectance map. Since a Lambertian surface reflects light equally in all directions, we see

from Equation 2.12 that the radiance function does not depend on viewing direction.

Thus the dependence on _" can be removed from all equations. 3

3This is true for any reflectance function which is viewing independent, not just Lambertian
reflectance.
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Note that the viewing direction could also ha_e been removed from the equa-

tions by using orthographic projection for the reflectance function while retaining

perspective projection for everything else. In this case the viewing direction would

be constant for each camera and its effect could be subsumed into the reflectance

map. Doing this would, of course, introduce an error into the calculations since or-

thographic and perspective projection do not produce the same viewing direction in

general. This error would be small for planet photo-topography since the cameras are

so far away from the surface. The large viewing distance results a very small relative

depth change AZ/Zo. This is especially true when the field of view is small.

2.5.3 Constant Albedo

So far the equations have terms that denote position on the surface _. The main

reason for this dependence is to take into account varying albedo, varying reflectance

properties or both. To simplify, we can assume that the reflectance properties, albedo,

or both are constant across the surface. Assuming the reflectance but not albedo, are

constant across the surface results in a reflectance function that is separated,

(2.29)

where /_(fi,¢t) is the reflectance function for a surface with uniform albedo, no

interflection, and no mutual occlusion. As for R, ary light source effects are included

in /_. When both the reflectance and albedo are constant, the dependence of the

reflectance map on surface position can be removect,

R(_,fi,9) =/_(fi,_) (2.30)

Combined with either Lambertian reflectance '_ or orthographic projection, the

dependence on _" can be removed,

4Or any viewing independent reflectance function
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a(_,n,_,) = _(_) (2.31)

The simplification restricts the applicability of the algorithm presented in next

chapter so that only uniformly colored surface patches have the possibility of being

estimated correctly. When algorithms based on this simplification are applied to

images that violate these simplifications, we would expect errors at the transition

between different colored parts of the surface, within differently colored areas or

both.

2.5.4 Aligned Cameras

The Final simplification that can be made is to align the cameras so that their optical

axes are parallel, which will also be parallel to the global coordinate system, As shown

in Figure 2-8. When the cameras are aligned, the rotational transformations I"1 and

T2 are identity transformations, which simplifies the stereo equations to
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(2.32)

While this situation is very unrealistic for the photo-topography problem, any set

of images can be re-projected into this coordinate system.

2.5.5 Summary of Simplified equations

The rest of the thesis is based on equations that take into account all the above

simplifications, in summary, they are:

1. A special global coordinate system that is halfway between the two camera

position.

2. All surface points are assumed to be visible from the two cameras.

3. The reflectance properties of the surface are assumed to be constant and Lam-

bertian allowing the viewing direction dependence to be dropped from the re-

flectance equations. In addition, it is assumed that there is no interflection

between different parts of the surface.

4. The surface is assumed to have constant albedo allowing the position dependent

term to be dropped.

5. The cameras optical axis are assumed to be ,_ligned with each other allowing

the rotational transformation to be set to ideittity.

Apply all the above, the set of equations are:

= a(')(n)
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E(2)(r2) - R(2)(fl) (2.33)

where

f(_ + b/2)
rl -

(_ + b/2). _;,'

/if-b/2)
r2 = (_ _ b/2)._.2'

(2.34)

a_

If we define z = ( •/:a and r = f(/z, then the constraint function can be written

fb
E(X)(r + _z ) = RO)(fi)

E(2)(r_ ]._b) = R(2)(fi )
£z

(2.35)

It is found more convenient in subsequent chapters to use a slightly different

notation. Use explicitly r = (x, y, f) and the normal vector fi is parameterized using

gradient component p and q,

.)

where

fi = (-p,-q, 1) (2.36)
_/p2 + q2 + 1

.)

..2

f z_.

p-
XZx _ Z

f z_
q-

yz_ + z

The photo-topography equations then become

(2.37)

_J
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fb

E(')(x + Tz,y)= nm(p,q)
fb

E(2I(x O-_z,y) = R(2)(p,q)
(2.3s)

2.6 Camera Calibration

In order to relate positions in the image direction vectors in 3-D space, the origin of the

camera coordinate system must be known. Finding this origin is the classical interior

orientation problem. As assumed in section 2.2.3, this origin is the projection of the

principal point in the image plane. In the special coordinate system, see Figure 2-8,

the position of each camera coordinate system origin can be specified by a vector

v = (v_, v_, fr). these vector specify the offset of the camera coordinate origin for

each image. Suppose v0 is the offset to an object point in the global coordinate

system, then the offset to this same point in the camera images are

fb
vl = Vo + -- (2.39)

2Z 0 '

fb (2.40)V2 -- VO -- --
2Zo "

the values of vl and v2 can be quite large in the aligned coordinate system indi-

cating that the images must be shifted far away from the camera coordinate system

origin. While this is not possible physically, it is a consequence of re-projecting real

images into the aligned coordinate system.



Chapter 3

Fusion of Shape from Shading and

Stereo

In this chapter, I will discuss the Fusion strategy proposed by Clay Thompson, in his

Ph.D. Thesis(See [24]). I will focus on the most efficient and robust z-only algorithm

in solving photo-topography problem. The basic idea is to closely couple the solution

of Shape-from-Shading and stereo in a variational approach. The important point is

to use each algorithms strength to compensate each one's weakness. (see table 3.1)

Naturally, one way of fusing two or more algorithms is to run each fused algorithms

separately on the image, and then combine the output to generate a single solution.

(See Figure 3-1) This approach is easy to understand and implement, since existing

algorithm can be put together in a ad-hoc manner, but it ignores the interconnection

embedded in the algorithms and the information coupling each algorithm.

The variationai approach, on the other hand, closely couples the algorithms to-

gether. (See Figure 3-2) This can be achieved by formulating a combined cost function

based on the cost function of each fused algorithms. The result is a combined opti-

mization problem which takes into account both the explicit and implicit constraints

between the methods. Variational methods, by their nature, can exploit any orthog-

onalities in the methods. It then has the potential to create robust, well performing

48
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Figure 3-2: Variational methods Based Fusion

combinations of algorithms which can be applied to a wide range of input images.

3.1 Fusion Strategy

The planetary images, particularly Viking images provide us two sources of informa-

tion.

1. Shading Information: the gray levels in each image are an indication of the

surface orientation with respect to the light source.

2. Stereo Information: assuming corresponding pixel in each image can be matched

up, the stereo information can be used to recover the shape.
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Shading Stereo Lighting

Shape From Shading

Binocular Stereo

Photometric Stereo

Shape

From Shading

Correspondence

Constraint

Correspondence

Constraint

Surface

Constraint

Binocular

Stereo

Correspondence

Constraint

Surface Orientation

Constraint

Correspondence

Constraint

Photometric

Stereo

Table 3.1: Photo-Topography problem source and constraint matrix

3. Photometric Information: the gray levels of corresponding pixel constrain the

set of possible surface orientation, since the images are taken at with two dif-

ferent light source position.

Another important point is that the shading and stereo information are indepen-

dent and mutual compensating, independent means we can differentiate the contri-

bution from each source of information. For exarcple, The shading information is

the strongest when shading is smooth, while stereo information is the strongest near

surface discontinuities, where feature dominates, and when cameras are widely apart.

The photometric information is strongest when the light source positions are widely

separated.

3.2 z-only DFSS Algorithm

z-only algorithm estimates everything in a single gobal coordinate system which is

defined to be half way between the two camera positions. Figure 3-3 shows the tree

diagram of the flow of this algorithm. The current estimate of the surface height z is

used to project points in the global coordinate system to points in each image using

perspective projection. These points won't in general land on a pixel center so some

type of interpolation is used to determined the value of the image at the projected

points. This interpolated image F is then compared to a computed image based on
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Figure 3-3: Centralize Algorithm Tree Based on Disparity

the current estimate of the surface. The error is used to update p, q, and ultimately

Z.

z-only algorithm uses hard integrability constraints. With hard integrablity we are

guaranteed that any solution obtained will be feasible. The trade-off is that z-only

algorithm will have less degree of freedom and more susceptible to local minima.

3.2.1 Variables

In z-only algorithm, the depth map z is the only optimization variable, thus its name

:.-only algorithm. The surface gradient components p and q are computed directly

from the depth map. The photo-topography images, camera geometry and surface

reflectance function are inputs to the cost function.
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3.2.2 Cost Function

The cost function is formed by integrating the squared photo-topography error intro-

duced by the current estimate for z, together with a penalty function for departure

from smoothness.

The penalty function is mainly used to guide the solution towards the minimum.

In practice, the smoothness weighting parameter A is slowly reduced towards zero as

the algorithm converges.

minzJ = ½/ f[( E('}(x+ _, y)- RC,t{p,q))2+ (E(_(x _ _, y) _ R(2)(p,q))2

.) 2 z2 )]dxdy.+A(z_ + .z_ + . (3.1)

The smoothness term is based on the second variation. It is equivalent to p_ +

Pv2+ qz2+ qy2when zz _, fp/zo and z_ _ fp/zo where Zo is the nominal depth 1

The cost function above is continuous and must be discretized before it can be

optimized. The process is an approximation one. using finite difference methods,

since the images are in digital form, each pixel represents the average of the brightness

falling within the sensitive area of the corresponding photosensor. It then makes sense

to approximate the values for p, q and z as arrays of gradient components or surface

depth.

Using an array of z, the cost function can be wlitten as:

minzJ - 1
Z_,_ez) [(F(')(z, y) - R(')(p, q))2 + (F(2)(z ' y) _ n(2)(p ' q))2

+a(zL + 2zL + z_)]d_ey. (3.2)

1The approximations are valid when the field of view is .,mall, the image is centered around the

camera's principal point, and the depth of field relative to the nominal depth is small.
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where D is the discrete image domain of the underlying variables in the global

coordinate system, N and M are the row and column dimensions of the discrete

domain, and e is the grid spacing(assume equal spacing in both x and y directions).

F(')(x, Y) are interpolated from the input image E(il(x, y)

fb
F(i)(z,y) = E(i)(5:,y) + (z :i= _z - 5:)[E(i}(5: + 1,y)- Eti)(5:, y)] (3.3)

where

f5

5: = floor(x =t=_z ). (3.4)

The floor(x) function returns the greatest integer towards minus infinity.

Matched grid is used to implement the cost function. In this implementation, p, q

and z are chosen all to be the same size as the image arrays. In such a representation,

all the functions are sampled on the same grid, thus the name matched-grid represen-

tation. This approach uses vertex-centered surface derivatives that are valid at each

vertex of the z grid. Since p and q are the same size as z, some type of approximation

must be made at the array edges. Bicubic interpolation is used to extrapolate the

estimates.

3.2.3 Optimization

This algorithms uses direct optimization via the conjugate gradient method. This

methods has two advantages, the first is the guarantee reduction of the cost function

at each step; the second is that no Hessian needs to be computed or stored.

3.2.4 Solution Techniques

The cost function is of the form

min,J = f / L(u,u',u",...)dxdy (3.2)
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where u are the optimization variable, and L is a possible non-linear function of

the optimization variables and its derivatives. The iztegral is taken over the domain

of the variables. The solution to this problem can be found by solving the associated

Euler-Lagrange equations(See a variational calculus book, such as [8]).

The Euler-Lagrange equations for a problem such as the one above are typically

coupled non-linear equations. Such equations are usually very difficult to solve ana-

lytically but can sometimes be solved numerically by converting them into discrete

equations. The conversion process involves substituting discrete approximations for

any derivatives of the optimization variables. The optimization variables may have

approximated by a discrete vector as well. The equations are then re-arranged to

create iterative update of the form

u(k + 1)= f(u(k),u(k- ?.),...) (3.6)

where u(k) is the value of the optimization variables for the k-th iteration.

When u has many components and when the components are updated in sequence

based on the best current estimate u, the resulting update scheme is called a Gauss-

Seidel optimization. When all of the components of u are update simultaneously

based on a previous estimate for u, the resulting scheme is called a Gauss-Jordan

optimization. Gauss-Seidel optimization schemes have higher convergence rates and

are more robust, and are best implemented on a serial computer. Gauss-Jordan

schemes, while they have lower convergence rates and are not as robust, can be

implemented on parallel computers.

Another way of solving the optimization problem :gosed is by using direct optimiza-

tion techniques. In this case the cost function, instead of Euler-Lagrange equations

are discretized. Any integrations are approximated by sums and any derivatives are

approximated by differences. The resulting cost fun,:tion is of the form
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min,,J = _ _ f(u) (:3.7)
x y

where f(u) is a discrete approximation of L(u,u',u",...). We chose conjugate

gradient optimization. The conjugate gradient scheme doesn't require the formation

of of the problem Hessian 2, which for an optimization problem with N variable is a

N-by-N matrix. The conjugate gradient scheme is important for vision problem since

for a typical 256-by-256 image, the Shape-from-Shading problem would have 2562 or

65536 optimization variables. The hessian for this problem would have 2564 or over

4 billion elements.

3.2.5 Speedup Techniques

For vision problems there are two promising speed up techniques: the use of hierar-

chical basis functions, and multi-grid methods. Both try to speed up the optimization

problems by increasing the information transfer spatially. The methods are based

on the properties of many vision algorithms where an optimization variables within

a grid of optimization variables may only be affected by its nearest neighbors. Due

to the local connectness, many vision algorithms have diffusion like properties, the

solution must diffuse throughout the grid. Schemes that transfer information over

longer distances thus may speed up an algorithm.

Using hierarchical basis functions transform the optimization space as seen by

the optimization algorithm but not as seen by the vision algorithm. Basically it

is like change of basis. Figure 3-4 shows the presentation of of a 9-by-9 domain

in hierarchical basis. In particular, note that the nodes of the hierarchical basis

propagate information over a much larger range than the nodes in nodal basis. It

shows linear interpolation between nodes, but any interpolation scheme can be used to

build a hierarchical basis. The variables can be transformed to the nodal basis when

_A linear approximation to the second order properties of the solution space at a given point
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Figure 3-4: Hierarchical B;_sis Functions
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computing the cost function or gradient. Unfortunately, all these transformation can

introduce round-off errors may adversely affect sensitive algorithms.

The hierarchical basis functions have the most effect on the convergence and are

the easiest to implement when the grid size is 2" + 1, where n is any positive integer.

for such a grid it is possible to use n + 1 hierarchical basis levels. Using hierarchical

basis functions increases the communication between nodes in the image array, so to

speed up the diffusion process considerably.

The multigrid methods seek to propagate information over a large range by solving

a series of problems of different size. Usually the original problem is formulated on

grids that decrease in size by a factor of two when going from one layer to the next.

The solutions on one layer are related to solutions on the layers above and below via

interpolation or prolongation. The solution are kept consistent with each other via

both intra-layer and inter-layer process. (See [23] and [2]).

Multigrid methods have the potential to be much faster than the hierarchical

basis functions since most of the computation is done on the smaller layers. Multigrid

methods are well suited to linear problems but may not work for non-linear problems.

Since

f(u) -# f(__, u) (3.8)

for non-linear function f, and the multigrid methods rely on equality of the pre-

vious equation to constrain the solutions on the smaller grids so that they don't bias

the solution on the larger grid.

One type of multi-grid method that can be used for non-linear problems is the

coarse-to-fine method. In this method, the problem is solved on coarse layers first

and the solution to each layer provides the initial condition to the next finer layer

below. This method is significantly faster that just optimizing on the finest grid but

does not produce as much convergence speed up as the full multigrid method.

Like the hierarchical methods, the multigrid methods work best when the grid size
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is 2" + 1. However, since the multigrid methods define a series of problems rather than

just choosing a new set of basis functions, the multigrid methods can be implemented

easily for all grid size. There is some evidence, that the grid size reduction should be

near 2 for best convergence rate (See [2al).

3.2.6 Discussion

The question of existence and uniqueness come up when working with optimization

algorithms. For the cost function presented earlier, it is clear that a solution exist.

The solution are bounded from below by zero. That is, the best possible value for

the cost function is zero and can be achieved only when the estimated surface images

and the actual images match exactly and when the regularization term is set to zero.

The uniqueness of a solution depends a great deal on the surface to be estimated.

In general, both global and local minima will exist. The optimization techniques

discussed above only guarantee convergence to a local minima. The global minimum

may only be achieved if the initial conditions for the optimization algorithm are close

to the true solution.



Chapter 4

Synthetic Image Test Results

It is crucial to test an new algorithm's performance, to understand its strength and

weakness before applying it to the real images. To test, it must be possible to compare

the estimated surface with the actual surface. The way to do it is to create synthetic

images from a known surface topology, estimate the surface with z-only Depth from

Shading and Stereo algorithm, compare the estimated surface with actual surface.

Only after that, we can be confident in the correctness of the new algorithm.

4.1 Synthetic Images

Four synthetic images are used with various difficulties to the Depth from Shading

and Stereo, from three typical topology.

• Easy Crater Images: The first pair of images is based on a crater on a flat

plane. The light sources are oblique, this makes it relative easy for DFSS to

estimate.

• Hard Crater Images: The second pair of images is based on a crater on a flat

plane. The light sources are almost behind the camera, this makes it difficult

for DFSS to estimate.

6O
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b f

Easy Crater 500 -2750

Hard Crater 500 -2750

Hills 500 -12222

Mountain 100 -2292

zo _z/zo p_l)
-997 0.0038 0.2

-997 0.0038 0.1

1000 0.0011 1.0

-996 0.0153 0.5

q_,) p_2) q_2J

-0.5 -0.3 0.1

0.1 -0.1 0.1

1.0 0.3 0.1

0.5 -0.5 0.0

Table 4.1: Camera Geometry

• Hill Images: The third is based on a fractally-generated set of rolling hills.

The light sources are oblique.

• Mountain Images: The third is based on a fractally-generated set of mountain

terrain. The light sources are oblique and the baseline is smaller. This set of

images poses a challenge and it most related to planet images.

The calibration parameters for the test images are summarized in Table 4.1. The

table lists value for the baseline distance b, camera focal length f, nominal depth

z0 and light source vector p!l), q_l), p_2), q_2). Notice the focal length and nominal

depth are negative so that it is consistent with a right hand system in perspective

projection. Baseline b, depth z and light source components are in units of miles.

The camera focal length and pixel spacing are based on camera units, millimeters.

All the test images are generate noise-free to test the best performance of the

z-only DFSS algorithm. All the results are presented with history of smoothness

weighting term A, history of cost function, history of estimated error, and the mesh

plot of depth z.

4.2 Algorithm Performance

In this section, I will show the performance of z-onl5 of the above four set of images.

All images are 65-by-65 pixel and using 6 levels of hierarchical basis, which is the

largest number of levels that can be used.
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4.2.1 Easy Crater Images

This set are based on a crater on a plat surface. It is very simple, and thus serves a

good test bed. The very different light source positions give very different shadings

to each image. As shown in Figure 4-1 The very strong shading information makes

it easy for DFSS to estimate. Contour plots of the reflectance map clearly shows the

effect of lighting. The larger separation of reflectance contours gradient space makes

it easy to constrain the possible set of feasible gradient directions from brightness.

Apparent z-only DFSS algorithm correctly estimated the easy crater surface. It is

interesting to notice the small anomaly in the lower left corner of the surface. With

the lighting condition, this anomaly has little effect on the estimated surface and

the programs' convergence, z-only DFSS algorithm has very good performance, the

correct surface topology is obtained in less than 150 iterations. The DFSS results is

shown in Figure 4-4.
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Camera Geometry
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Figure 4-1: Easy Crater Synthetic Images Camera Ceometry. Graph shows the cam-

era position and direction(dotted lines) and light so'arce direction(solid lines)
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Figure 4-2: Easy Crater Synthetic Images Camera Geometry projected in xz and yz

plane
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Figure 4-3: Easy Crater Synthetic Images
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Figure 4-4: z-only DFSS iteration history on Easy Crater Images. Graph shows

the z-only DFSS algorithm performance on the easy crater image pair. The upper

graph shows the cost function(solid line) and RMS error(dashed line) of the estimated

surface. The lower graph shows history of the smoothness weighting term A
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Estimated surface Error surface

Figure 4-5: z-only DFSS Estimated Surface and Error on Easy Crater Images at the

end of iterations
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Estimated surface, iter. = 25 Estimated surface, iter. = 125

Estimated surface, iter. = 250 Estimated surface, iter. = 375

Figure 4-6: z-only DFSS estimation at various iteration steps on Easy Crater Images
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Estimated surface, iter. = 600 Estimated surface, iter. = 940

Estimated surface, iter. = 1100 Estimated surface, iter. - 1200

Figure 4-7: z-only DFSS estimation at various iteration steps on Easy Crater Images
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4.2.2 Hard Crater Images

In this set of images, the baseline distance between the cameras is about half the

distance to the surface and the light source positions for the two images are nearly

the same and almost directly behind the cameras. As shown in Figure 4-8, from the

light contour plot and the true images, the two images are very bright and look very

much the same except for slight difference in the shading.

This images represent the worst case for DFSS algorithm since the shading infor-

mation is weak and the range of brightness is small. However, they do have strong

stereo correspondence information which is unfortunately not heavily utilized by z-

only DFSS algorithm.

Figure 4-11 to Figure 4-14, shows the results of applying the z-only DFSS algo-

rithm to this test case. It shows the estimated surface resembles the true image in

figure 4-8, even though they don't match. Clearly the z-only DFSS algorithm gets

stuck in a local minimum. The problem stems from that the algorithms incorrectly

interpreted the surface to be concave when it is actually convex. Even though stereo

information is presented and can be used to correctly determine the orientation of

the surface, the z-only DFSS algorithm is biased towards shading information. The

surface orientation ambiguity is also a result of having both light sources directly

behind the cameras.
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Figure 4-8: Hard Crater Synthetic Images Camera Geometry. Graph shows the

camera position and direction(dotted lines) and light source direction(solid lines).
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Figure 4-9: Hard Crater Synthetic Images Camera Geometry projected in xz and yz

plane
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Figure 4-10: Hard Crater Synthetic Images
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Figure 4-11: z-only DFSS iteration history on Hard Crater Images. Graph shows

the z-only DFSS algorithm performance on the hard crater image pair. The upper

graph shows the cost function(solid line) and RMS error(dashed line) of the estimated

surface. The lower graph shows history of the smoothness weighting term A
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Estimated surface Error surface

Figure 4-12: z-only DFSS Estimated Surface and Error on Hard Crater Images at the
end of iterations
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Estimated surface, iter. = 25 Estimated surface, iter. = 125

Estimated surface, iter. = 250 Estimated surface, iter. = 375

Figure 4-13: z-only DFSS estimation at various iteration steps on Hard Crater Images

©-9-.
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Estimated surface, iter. = 600 Estimated surface, iter. = 940

Estimated surface, iter. = 1 I00 Estimated surface, iter. = 1200

Figure 4-14: z-only DFSS estimation at various iteration steps on Hard Crater Images
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4.2.3 Hill Images

The third set of images is of an undulating surface similar to erode hills and was

generated using a fractal technique. Figure 4-15 shows the camera geometry, true

surface, reflectance contours. This set of images is more representative of the type of

terrain the DFSS algorithm are likely to encounter. As shown in Figure 4-15, the left

cameras is directly over the surface and the light camera views the surface obliquely.

The light sources are separated, as in the ease crater case. This results in the images

with strong shading information. The DFSS algorithm performed rather well in this

case, correctly interpreted the surface.

The Figure 4-18 shows the results of applying the DFSS algorithm to the hill

images, z-only DFSS algorithm performs well, correctly estimated the complicated

topology. Due to the complexity, the images requires more iterations to obtain a

satisfactory estimate of the surface than the easy crater case.
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Figure 4-15: Hill Synthetic Images Camera Geonletry. Graph shows the camera

position, direction(dotted lines and light source dir,._ction(solid lines).
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Figure 4-16: Hill Synthetic Images Camera Geometry projected in xz and yz plane
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Figure 4-17: Hill Synthetic Images
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Figure 4-18: z-only DFSS iteration history on Hill Images. Graph shows the z-only

DFSS algorithm performance on the hill image pair. The upper graph shows the cost

function(solid line) and RMS error(dashed line) of the estimated surface. The lower

graph shows history of the smoothness weighting term A
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Estimated surface
Error surface

Figure 4-19: z-only DFSS Estimated Surface and Error on Hill Images at the end of

iterations
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Estimated surface, iter. = 25 Estimated surface, iter. = 125

Estimated surface, iter. = 250 Estimated surface, iter. = 375

Figure 4-20: z-only DFSS estimation at various iteration steps on Hill Images



CHAPTER 4. SYNTHETIC IMAGE TEST RESULTS 85

Estimated surface, iter. = 600 Estimated surface, iter. - 940

Estimated surface, iter. = 1100 Estimated surface, iter. = 1200

Figure 4-21: z-only DFSS estimation at various iteration steps on Hill Images
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4.2.4 Mountain Images

The fourth set of images is of a highly mountainous surface and was created to

show the performance on steep terrain. The steep terrain requires that the baseline

distance from the cameras to be small so that all the surface points are visible from

both cameras. Thus it is a good example to show the merit of the algorithm when

the stereo baseline is small. As shown in Figure 4-22, The light source position are

widely separated and generate deep shadows on this steep terrain. The reflectance

maps are flat within a shadow so no helpful gradient is available to the algorithm.

In addition, knowledge that a particular pixel is in shadow only constrains the set of

possible gradient directions to a sub-pane of gradient space. Thus, within a shadow

region, much more influence is given to the brightness values from the other image.

This results in a slower convergence.

The Figure 4-25 shows the results of applying DFSS algorithm. The z-only DFSS

algorithm performed reasonably well, correctly interpreted the surface. Due to the

complexity of the surface, the algorithm requires many more iterations to achieve a

satisfactory solution. Never the less, the algorithm correctly estimates the surface. It

proves the algorithm is robust and can handle small base line difference.
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Figure 4-22: Mountain Synthetic Images Camera Geometry. Graph shows the camera

position and direction(dotted lines) and light source direction(solid lines).
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Figure 4-23: Mountain Synthetic Images Camera Geometry projected in xz and yz

plane
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Figure 4-24: Mountain Synth,.'tic Images
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Figure 4-25: z-only DFSS iteration history on Mountain Images. Graph shows the

z-only DFSS algorithm performance on the mountain image pair. The upper graph

shows the cost function(solid line) and RMS error(dashed line) of the estimated sur-

face. The lower graph shows history of the constraint )_
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Estimated surface

Error surface

Figure 4-26: DFSS Estimated Surface and Error o_t Mountain Images at the end of

iterations
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Estimated surface, iter. = 25 Estimated surface, iter. = 125

Estimated surface, iter. = 250 Estimated surface, iter. = 375

Figure 4-27: DFSS estimation at various iteration steps on Mountain Images
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Estimated surface, iter. - 600 Estimated surface, iter. = 940

Estimated surface, iter. = 1100 Estimated surface, iter. = 1200

Figure 4-28: DFSS estimation at various iteration steps on Mountain Images



CHAPTER4. SYNTHETIC IMAGE TEST RESULTS

Rel. Error Abs. Error Iterations

Easy Crater 0.172 0.173 1200

Hard Crater 1.072 1.073 1200

Hills 0.018 0.025 1200

Mountain 0.718 0.780 1200

94

4.3

Table 4.2: Performance Comparison

Summary of the Results

A summary of the results of DFSS algorithms running on easy crater, hard crater,

hill and mountain images are presented in Table 4.2. The relative and absolute error

between the true and estimated surface at the last iteration are calculated as

and

I 1 zt_,,_)2 (4.1)J_b_= __(z-,

I 1J,_,= -V-_((z-5)-(z,_o-5,,_)) 2.

where 2 and 5t_,_ are the average of z and 5t,,_ respectively.

(4.2)

:2;

4.4 Performance

From the test results on the synthetic easy crater, hard crater, hill and mountain

images, clearly z-only DFSS can achieve very good estimation on surface topology in

a reasonable number of iterations, in the easy crater, hill and mountain image cases.

z-only algorithms also proves to be robust, especially in small baseline situation. The

only difficulty is dealing with images which has very weak shading information, as

represented by the hard crater case.

It was shown that the z-only DFSS algorithm has much better performance using

.J
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the two images that a simple shape from shading algorithm which uses only one

image. (see [24]) This performance increase validates the fusion approach to obtaining

better vision algorithm.

The z-only algorithm was also shown to be robust, able to accurately estimate the

synthetic surface in the presence of several types of errors. The performance of the

algorithm based on images that contains noise, geometry error, or reflectance errors

was shown in [24] chapter 7. In Most case, The algorithm was able to form a close

estimate.

It is clear the algorithm has considerable difficulties with the hard crater images.

The optimization got caught in the local minimum. The reason is clearly shown in

the Figure 4-8 for a given brightness level(i.e., along one of the contours), there are

two viable solutions with different surface orientations. The local minimum has a

orientation in the "dipped" region that is viable but incorrect orientation, and the

stereo information is not strong enough to pull it out of the local minimum.

The C version of z-only DFSS algorithm runs 2-3 times faster that its counterpart

in Matlab, memory requirement is 30 percent less. It is also made more portable.

The C functions has been tested on Sun, and IBM c,_mpatible PCs.



Chapter 5

Viking Image Results

In the previous chapter, the z-only Depth from Shading and Stereo algorithm has

been shown to be efficient and robust. In this chapter, the algorithm will be applied

to real images, namely areal photos taken during Viking Space Project.

5.1 Viking Space Project

Viking Space Project was started by the National Aeronautics and Space Adminis-

tration on November 15, 1968. The main objectives of the project was to achieve a

soft landing on the surface of the Mars and to relay scientific data back to the Earth.

The main function of the orbital cameras, whose pictures are displayed in this thesis

were to aid in the selection of safe landing sites to establish the geologic and dynamic

environments in which the lander experiments were performed.

Two previous missions, using Mariner 4, mariner 6 and 7 obtained a blend of

low-resolution, wide area pictures. Mariner 9, the final predecessor to Viking was the

first spacecraft to go into orbit about another planet. It took more than 7300 images

of Mars, covered the entire surface at a resolution of 1-3 km, and selected area down

to 100 meters.

96
._2
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5.1.1 Viking Mission

The Viking Mission consisted of four spacecrafts: two identical orbiters and two

identical landers. One of the orbiter experiment was the Visual Imaging Subsystem

(VIS), which acquired the images that are used in this thesis. The major objective

of the VIS experiment was to characterize potential landing site.

Viking Orbiter I was launched from Kennedy space center at Cape Canaveral on

August 20, 1975, and arrived at Mars on June 19, 1976. Initially, the spacecraft

was put into a Mars-synchronous elliptical orbit with a period of 24.66 hours, an

apsapsis of 33,000 km and a periapsis of 1513 km. During the first month, Viking

I began systematically imaging Mars on July 20, 1976. Its highly elliptical orbit

was particularly suited for studying the surface because it allowed a mix of close-up,

detailed views at periapsis and long range synoptic view near or at apoapsis. More

that 30,000 pictures were taken. _:

Viking Orbiter II was launched September 9, 1!)75, and arrived at Mars on au-

gust 7, 1976. A major difference in the orbit of this spacecraft compared to that of

Viking Orbiter I is its high inclination, which allowec Viking Orbiter II to observe the

complex, enigmatic polar regions at relative close range. Viking Orbiter II returned

nearly 16,000 pictures of Mars and its satellites.

The Viking orbiter spacecrafts operated in orbit around Mars from 1976 to 1980.

The orbiter imaging systems imaged all of the terrains on Mars, collected some color

and stereo images, and made observations of phob_s and deimos. Some image se-

quences acquired by the VIS experiment include sysl ematic medium and high resolu-

tion coverage of large portions of the surface, stereo images, observations of Phobos

and Demios, color images of the equatorial regions, observations of the polar regions,

and monitoring dust storm activity.
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5.1.2 Viking Orbiter Visual Subsystem

Each Viking Orbiter, Viking Orbiter I and II, was equipped with two identical vidicon

cameras, called the Visual Imaging Subsystem (VIS) [26], [14], [1]. Each VIS camera

consisted of a telescope, a slow scan vidicon, a filter wheel, and associated electronics.

The angular field of view of the camera as defined by the reseau pattern was 1.51 by

1.69 degrees. The ground area covered by an image varies as the function of spacecraft

altitude and emission angle. A digital image was generated by scanning the vidicon

face plate. A full resolution, uncompressed Viking orbiter image consists of an array

of 1056 lines with 1204 samples per line. There are only 1182 samples in each line are

valid. The extra 22 are consist of dark bands on the left and right edge of each image,

produced by an opaque mark in front of the camera. The images then transmitted

back to earth station.

Many Viking orbiter images have missing data and contain some amount of noise

[14]. The missing data are mainly due to sample intervals, resulted from the raw data

being stored on the spacecraft and transmitted to earth in packets that contain every

seventh pixel. The noise found in these images include single-pixel random noise and

several source of coherent noise. The random noise is usually due to telemetry errors.

Techniques exist to remove the random noise and missing data [4]. The coherent

noise arises from shuttering of the adjacent camera, filter wheel stepping, and scan

platform movements [14]

5.2 Data selection

Mars provides many features are suitable to use DFSS algorithms to analysis the

photo images. Great canyons are incised into the surface, huge dry river beds show

the changes in topology features, large volcano tower distinct itself on a flat surface.

However, huge volume of Mars images also pose difficulties for image selection

along with some natural obstacles, such as seasonal dust storm, caps od carbon dioide



CHAPTER 5. VIKING I.'tlAGE RESULTS 99

at the poles.

Image pair selection are done by Mike Caplinger. Using their local facilities, Mike

Caplinger is able to browse through a large amount of Mars images and pick out the

images of the same longitude and latitude. The associated Sun position and space

craft position and angles are obtained. These geometry information and the image

data are then sent to us to use with DFSS algorithm.

5.3 Data Processing

Two preliminary processing steps are always done to radiometrically and geometri-

cally calibrate the images:

• Viking Orbiter images are radiometrically calibrated by converting the digitized

signal from the camera into a quantity that is proportional to the radiance reach-

ing the sensor. Each Viking camera was calibrated before flight. In addition,

changes in the calibration over time has been estimated from analyses of images

of deep space and dust storms. The radiometric calibration procedure applies

additive and multiplicative corrections that account for the varying sensitivity

of the vidicon across the field of view and over time. The calibrated values are

proportional to radiance factor, which is defined as the ratio of the observed

radiance to the radiance of a normally illuminated Lambertian reflector of unit

reflectance at the same heliocentric distance.

• Geometric calibration of Viking Orbiter images removes electronic distortions

and transforms the point perspective geometry of the original image into a

map projection. The electronic distortions are barrel-shaped distortions from

the electron beam readout and complex distortions from interactions between

the charge on the vidicon face plate and the electron beam. The electronic

distortions are modeled be comparing the predicted locations of undistorted

reseau marks with the actual locations in an image.
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During the processing, reseau marks are removed, bit errors and/or tape errors are

corrected. The raw Mars images are projected using the nominal imaging geometry

to a projection such as sinusoidal or Mercator, relative to a reference spheroid. This

has the effect of removing any gross effects caused by the curvature of the planet, but

since the small scale topography is not modeled, the disparities it induces remain.

The images are also rotated so that epipolar lines are parallel to the scanlines. These

selected and processed data are then subsampled to 256 by 256 pixet for DFSS anal-

ysis. The geometry information are transformed into the aligned global coordinate

system, as described in section 2.5. The down-sizing is done only because limited

time and CPU power to process full resolution images. 1

5.4 Data Analysis

In this section, I present two typical examples of Viking image pairs. The DFSS

result are shown to demonstrate the effectiveness and robustness of z-only Depth

from Shading and Stereo algorithm.

5.4.1 Example 1

The first pair of images is of an terrain surface similar to eroded hills and river bed.

Figure 5-1 and Figure 5-2 shows shows the camera geometry and its projection in xz

and yz plane. The light sources come from almost the same direction. Fortunately, the

light source direction is very oblique and different from the camera direction results

in much stronger shading information comparing with hard crater case. Table 5.1

lists the geometric information about this pair of images.

The Camera Angles are listed in the right ascension, declination, and twist of the

camera. The Spacecraft Vector is the position of the spacecraft/camera in the refer-

ence frame of the planet. The Planet Angles are the orientation of the planet in the

1At 256 by 256 pixel, it takes about 20 hours to finish 1200 iterations
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Camera Angle Spacecraft Vector Planet Angle Sun Vector
Left -68.449593 -1324.127686 52.694637 154312733.273824

313.565796 1092.557129 317.313019 159262758.890330

274.407928 5395.773438 225.757187 68965427.707157

Right -63.648964 -1796.010010 52.694637 152618273.748284

339.906433 853.954346 317.313019 160370845.199162

297.853882 5504.281250 225.624329 69519512.685777

Table 5.1: Geometric Information about the first pair of Viking Images

same reference frame as the Camera Angles, also in right ascension, declination and

twist. The Sun Vector is the position of the Sun in _he planet reference frame. These

information of orientation and position are converted to the geometric information in

the global reference frame and shown in Figure 5-1 and Figure 5-2. Figure 5-3 shows

the reflectance map contour and the image pair.

Figure 5-4 to Figure 5-7 shows the results of applying the DFSS algorithm to

this pair of images, z-only DFSS algorithm performs well, correctly estimated the

complicated topology. Obviously, considerable more iterations are required to obtain

a satisfactory estimate of the surface than the synthetic case. Even so, the algorithm

formed a stable estimation after about 500 iteratiors. Also, the cost function remains

higher than that in synthetic image case.
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Camera Geometry
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Figure 5-1: Mars Viking Images pair Camera Geometry. Graph shows the camera

position and direction(dotted lines), as well as the light source direction(solid lines)
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Figure 5-2: Mars Viking Images pair Camera Geometry projected in xz and yz plane
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Reflectance Function Contours
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Figure 5-3: Mars Viking images pair and gradient contour
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Figure 5-4: DFSS iteration history on Mars Viking Image pair. Top graph shows the

history of cost function. Bottom graph shows the hi,;tory of the smoothness weighting

term
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Estimated surface

Estimated images

Figure 5-5: DFSS Estimated images and Surface on Mars Viking Image pair at the

end of iterations
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Estimated surface, iter. - 25 Estimated surface, iter. = 125

Estimated surface, iter. = 250 Estimated surface, iter. = 375

Figure 5-6: DFSS estimation at various iteration s'.eps on Mars Viking Image pair
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Estimated surface, iter. = 600 Estimated surface, iter. = 940

Estimated surface, iter. = 1100 Estimated surface, iter. = 1200

Figure 5-7: DFSS estimation at various iteration steps on Mars Viking Image pair
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Camera Angle $pacecraft Vector Plar.et Angle Sun Vector

Left -38.500999 3031.000000 52 694817 247003002.182980

-114.101997 3252.000000 317.313354 -6496592.410365

-153.830994 2154.000000 60.560833 -9607699.669818

Right -16.581617 3431.279785 52.694775 241693638.758362
221.748749 3228.368896 317.313263 37984763.457939

250.999435 1721.439697 66.486511 10952544.914326

Table 5.2: Geometric Information about the first pair of Viking Images

5.4.2 Example 2

The second pair of images is also of an terrain surface similar to eroded hills and

river bed. Figure 5-8 and Figure 5-9 shows the camera geometry and its projection

in xz and yz plane. The light sources come from almost the same direction. Similar

to example 1, there is little separation in the direction of the light sources. This

also presents a challenge to the DFSS algorithm. The table below Table 5.2 lists the

geometric information about this pair of images. In Figure 5-10, the reflectance map

contour and the image pair are shown.

The Camera Angles are listed in the right asc,msion, declination, and twist of

the camera. The Spacecraft Vector is the position of the spacecraft/camera in the

reference frame of the planet. The Planet angles are 1he orientation of the planet in the

same reference frame as the Camera Angles, also irL right ascension, declination and

twist. The Sun Vector is the position of the Sun in 1he planet reference frame. These

information of orientation and position are converted to the geometric information in

the global reference frame and shown below.

Figure 5-11 to Figure 5-14 shows the results of applying the DFSS algorithm to this

pair of images, z-only DFSS algorithm performs r_asonably well, closely estimated

the complicated topology. Obviously, considerabl_, more iterations are required to

obtain a satisfactory estimate. Similarly to example 1, after 500 iterations, DFSS

algorithm formed a stable estimation.
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Camera Geometry
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Figure 5-8: Mars Viking Images pair Camera Geometry. Graph shows the camera

positions and directions(dotted lines), also the light source direction(solid lines).
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Figure 5-9: Mars Viking Images pair Camera Ceom_try projected in xz and yz plane
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Figure 5-10: Mars Viking Images pair and gradient contour
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term A
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Estimated surface

Estimated images

Figure 5-12:
iterations

DFSS Estimated Surface on Mars Viking Image pair at the end of
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Estimated surface, iter. = 25 Estimated surface, iter. = 125

Estimated surface, iter. - 250 Estimated surface, iter. = 375

Figure 5-13: DFSS estimation at, various iteration steps on Mars Viking Image pair
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Estimated surface, iter. = 600 Estimated surface, iter. = 940

Estimated surface, iter. = 1100 Estimated surface, iter. = 1200

Figure 5-14: DFSS estimation at various iteration steps on Mars Viking Image pair
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5.5 Summary of the Results

The results of z-only DFSS algorithms running on two example Mars Viking im-

age pairs are presented in the previous sections. They've both demonstrated the

adequate performance and robustness of this algorithm. Especially, the algorithm's

performance under which the two light sources come in from the same or almost the

same direction.

From the test results on the real Viking image pairs, clearly z-only DFSS can form

close estimation on surface topology in a reasonable number of iterations. There is a

general increase of the iterations needed comparing with synthetic image case. But

after 500 iterations, the estimate is already quite stable and quite close to the true

surface.

The result also shows that z-only algorithm is robust, able to estimate the topo-

logical surface in the presence of several types of errors.

One thing is not addressed clearly by the earlier two examples, that is one of

the advantages of Shape from Shading is to be able to detect details of the shape.

Comparing the estimated images and the real image_, one can see most of the features

are represented. In the mesh plot, however, it is not obvious. This is largely due to

the coarseness of the mesh plot. To demonstrate that the detailes are there, we can

zoom in on one particular feature. In this case, I chose the crater like feature in the

second example.

Clearly the crater feature is vivid in the enlarge.t portion of the real image. Both

the estimated image and surface present such a feature, however, a cluster of much

smaller craters which are visible in real image is smeared and hardly recognizable in

the estimated image and surface.
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Full images

Zoomed in images around crater feature

Figure 5-15: Detailed look of the crater like feature in example two, real images and

zoomed in images around the crater.
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Estimated images around crater feature

Estimated surface around crater feature

Figure 5-16: Detailed look of the crater like feature in example two, estimated images
and surface around the crater.



Chapter 6

Error Analysis

It is of crucial importance to understand the various errors and assumptions associated

with the images and the methods used to analysis them in earlier chapter.

6.1 Theoretical Error

It is important to review the assumptions behind those simplified equations. The

perspective projection equations assume perfect lenses and perfect knowledge of the

camera principal points and optical axes. The surface radiance equation assumes we

have perfect knowledge of the surface reflectance properties, light source directions,

and all surface points as visible from both cameras. The simplified form of the im-

age irradiance equation assumes we either have a perfect sensor or we can perfectly

calibrate the sensor to remove any abnormalities from the sensor & lens combina-

tion. The stereo equations assume we know the relative position and orientation of

the two camera perfectly, the only assumption that are truly artificial are the as-

sumptions of perfect knowledge of the reflectance maps and the the assumption of no

self-illumination. With more careful measurements and more expensive equipment,

it is possible to approach perfect knowledge of other assumptions. The assumption

that all surface points be visible merely restricts the roughness of the surface that

120
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this research is applicable to.

It is as well as important to go over the simplified equations and point out the

their effects. There are several simplifications that have been made to the equation.

1. A special global coordinate system that is h_lfway between the two camera

position.

2. All surface points are assumed to be visible from the two cameras.

3. The reflectance properties of the surface are assumed to be constant and Lam-

bertian allowing the viewing direction dependence to be dropped from the re-

flectance equations. In addition, it is assumed that there is no interflection

between different parts of the surface.

4. The surface is assumed to have constant albedo allowing the position dependent

term to be dropped.

5. The cameras optical axis are assumed to be _.ligned with each other allowing

the rotational transformation to be set to ider_tity.

With all the above simplifications, the set of equations are:

= a('l(n)

E(2)(r2)= R(2)(fi) (6.1)

where

f(( + b/2)

r, = (_ + b/2). i,'

f(( - b/2)

r2 = (_ _ b/2). i2'
(6.2)



CHAPTER 6. ERROR ANALYSIS 122

If we define z = [. ic and r = f[/z, then the constraint function can be written

as

EO)(r + @zb) = R(l)(fi)

EO)(r - -_zb) = RO)(h) (6.3)

Use explicitly r = (z, y, f) and the normal vector fi is parameterized using gradient

component p and q,

where

fi= (-p, -q, 1)
v/p2 + q2 + I (6.4)

f z_:

p-
ZZ_: + Z

f z_
q-

yz v + z

The photo-topography equations then become

(6.5)

fb
EO)(x + "_z,Y)= RO)(p,q)

fb
E(2)(x _ -_z, y ) = RO)(p, q) (6.6)

In order to relate positions in the image direction vectors in 3-D space, the origin

of the camera coordinate system must be known. Finding this origin is the classical

interior orientation problem. In the special coordinate system we use here, see Fig-

ure 2-8, the position of each camera coordinate system origin can be specified by a

vector v = (v_, v_, fr). these vector specify the offset of the camera coordinate origin
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for each image. Suppose v0 is the offset to an obje:t point in the global coordinate

system, then the offset to this same point in the camera images are

fb (6.7)
Vl ----Vo-'}'_Z O,

fb (6.8)
V2 -_ Vo -- 2z'--'_"

the values of vl and v2 can be quite large in the aligned coordinate system indi-

cating that the images must be shifted far away from the camera coordinate system

origin. While this is not possible physically, it is a consequence of re-projecting real

images into the aligned coordinate system.

In removing viewing direction dependency, we u:_e orthographic projection for the

reflectance function while retaining perspective projection for everything else. This

introduced an error into the calculations since orthographic and perspective projection

do not produce the same viewing direction in general. This error is so small for planet

photo-topography, since the cameras are so far away from the surface. The large

viewing distance results a very small relative chang_ in depth. This is especially true

here due to the small viewing angle.

Also, this algorithm only deals with uniformly colored surface, in another word.

no varying albedo. This assumption is quite valid in the case we are discussing.

The above simplified equations helped formulate the algorithm and produce rea-

sonable result, it's also hidden some important information, such as the normal vector

is parameterized using gradient components p and q, instead of vector. Also it im-

posed restrictions such as all the surface point are visible from two cameras.
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6.2 Image Errors

As discussed in earlier chapter, the images taken during Viking Project consisted of

many error, noise and needs calibration and corrections.

Many Viking Orbiter images are missing data and contain some amount of noise.

a common pattern of missing data is a series of vertical bars with zero value pixel

spaced at an interval of 7 samples. In addition, data for a few horizontal image lines

may be missing and such lines are filled with zero values.

The noise found in these images include single-pixel random noise and several

source of coherent noise. The random noise is usually due to telemetry errors. The

coherent noise arises from shuttering of the adjacent camera, filter wheel stepping, and

scan platform movements. The coherent noise typically exists in the top or bottom 100

lines of an image and appearing as a "herring bone" pattern. Box filtering techniques

that fill in zero values or average the bright and dark spikes of random noise are often

successful and used.

As described in chapter 5, the Viking images are radiometrically calibrated by con-

verting the digital signal received from the camera to a quantity that is proportional

to the radiance reaching the sensor.

6.3 Lighting Condition, Camera Position and the

effects on DFSS results

More important here is the effects of the geometry information under which the images

are taken. To illustrate the effects, we regenerate the synthetic easy crater case, under

similar lighting, camera geometry and baseline condition of to that of the real images,

in particular example 1 in Chapter 5.

Similar to the set used in chapter 4, these images are based on a crater on a flat

surface. It is very simple, and thus serves a good test bed. As shown in Figure 6-1,
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comparing this pair with the pair in chapter 4, contour plots of the reflectance map

as well as true images clearly show the effect of the change of lighting. Examing the

estimated images and surface, apparently z-only DFSS algorithm estimated this test

crater surface. But notice the flat background is distorted, which means under this

kind of lighting condition, a small anomaly can affect the estimated surface and the

programs' convergence. The DFSS results is shown in Figure 6-4.
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Camera Geometry
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Figure 6-1: Test Crater Synthetic Images Camera Geometry. Graph shows the camera

position and direction(dotted lines) and light source direction(solid lines)
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Figure 6-3: Test Crater Synthetic Images
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Figure 6-4: z-only DFSS iteration history on Test Crater Images. Graph shows

the z-only DFSS algorithm performance on the test crater image pair. The upper

graph shows the cost function(solid line) and RMS error(dashed line) of the estimated

surface. The lower graph shows history of the smoothness weighting term A
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Estimated surface

Estimated images

Figure 6-5: z-only DFSS Estimated Surface and Error on Test Crater Images at the
end of iterations
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Estimated surface, iter. = 25 Estimated surface, iter. = 125

Estimated surface, iter. = 250 Estimated surface, iter. = 375

Figure 6-6: z-only DFSS estimation at various iteration steps on Test Crater Images
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Estimated surface, iter. = 600 Estimated surface, iter. = 940

Estimated surface, iter. = 1100 Estimated surface, iter. = 1200

Figure 6-7: z-only DFSS estimation at various iteration steps on Test Crater Images
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6.4 Comparison between DFSS results and that

of Shape from Shading

The earlier two examples presented in chapter 5 prompt us two questions. The first

one is that the two images are taken under similar lighting and camera position, the

two images look alike except slight change in shading, therefore what kind result the

Shape from Shading algorithm will provide? The ,;econd is that from photometric

stereo, we know that the more different the lighting condition is, the better the

result is. In this way, we can regard Shape from Shading as photometric stereo under

exactly the same lighting condition. DFSS algorithm on the other hand has integrated

photometric stereo into itself. So can DFSS algorithm produce better result?

These two questions are actually the same, the:_ can be rephrased as "is DFSS

algorithm working better than Shape from Shading in dealing the real images we

used here, and why?". The answer is yes. The reason is that DFSS fused photo-

metric stereo, binocular stereo and shape from shading. It can take advantage of the

difference in shading and gradient in the image pai:s. This lends another handle to

constrain the estimated surface, particularly at the estimated of overall trend of the

surface, where Shape from Shading is weak. Even though the differences are small in

the two examples in this thesis. The benefit is obvious.

To show and prove the advantage of DFSS, we can go back to previous section.

and run one image through Shape from Shading. The reason to do so is that those

images pairs are synthetically generated according t,_ the same lighting and geometry

information of that of example 1 in chapter 5. This is better and easier than the real

images because they are simple structure and we kr_ow the ground truth.

Clearly, Shape from shading closely estimated the surface. Comparing the esti-

mated surface with that from DFSS, DFSS predicte _ a much flat background surface

and the crater feature is better shown.
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Real Image Estimated Image

Estimated Surface

Figure 6-8: Test Crater Synthetic Image (left camera) and the estimated surface at
the end of iteration.





Chapter 7

Discussion

7.1 Merits

z - only algorithms demonstrate a much better performance using the two photo-

clinometry images that a simple shape from shading algorithm which uses only one

image. This Performance increase validates the fusion approach to obtaining better

performance vision algorithms.

The z-only algorithm was also shown to be robust, it is able to accurately estimate

the synthetic surface in the presence of several types of errors. The performance of

the algorithm based on images that contains noise, geometry error, or reflectance

errors was demonstrated in real Mars images. In which case, the algorithm is able to

form a close estimate.

The z - only DFSS algorithm shows very good performance on real Mars Viking

image pairs. Especially it shows its performance under real measurement errors,

calibrations error, distortion, and noise. It also shows its robustness under relatively

weak shading information.

The C implementation of z - only DFSS algorithm makes it more portable and

efficient. Better Than three times the performance is obtained than its version in

matlab. Large image(256x256) can now be processed on a SPARCstation.

135
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7.2 limitations

There are many limitations in the Depth from Shaoe from Shading and Stereo algo-

rithm.

Though z-only algorithm is the most robust one among the proposed zpq, Dual-z

and Disparity map. It does not handle varying albedo, nor does it handle very weak

shading situation very well. Along these, there are some technical deficiencies, such

as reflectance map depends on scalar p and q, rather than vector P and Q.

DFSS has strong bias towards Shape-from-Shading algorithm. Since it is vari-

ational method based, easy to integrate when shading information is weak, DFSS

algorithm can get stuck in a local minimum, as seen in hard crater case. The stereo

information presented in both the synthetic and real images are strong and can be

used to pull the algorithm out of the local minimum. However since binocular stereo

is feature based, makes it difficult to incorporate into the cost function.

In dealing with real images, it is found that DFSS algorithm performs not very

satisfactory when lighting are coming from similar direction. Though this is not DFSS

was developed for, it must also be able to cope with real situations.

The DFSS algorithm is based on simplified geometry, It works the best when the

distance from the object to the two cameras are roughly equal. This is not always

true or easily obtainable in the real world. This also contributes to the difference of

the performance between the real and the synthetic images.

There is also an implementation issue. For 256 by 256 pixel image, the program

runs roughly 20 hours to finish 1200 iteration with maximum number of hierarchical

functions. To process full resolution images, 1204 by 1056 pixel, is not practical.

Since the thesis' main goal is to test z- onl_ DFSS algorithm on real Viking

Images images. I am not going to discuss about many extensions possible to this

algorithm. But any extension which may result s!gnificant memory and CPU time

requirement increase, such as the write reflectance maps as a function of vector P

and Q. Instead focus should be on improving optimization process.



Appendix A

DFSS Functions

In this Appendix, I will briefly explain all the DFSS core processing functions and

their relationship. From these functions, one can build a program to process and

analysis any images fit DFSS feature, as disscused in earlier chapters, by providing

proper I/O functions.

The source code of the following functions and a makefile are made available on

ftp.ai.mit.edu(128.52.32.11), in/pub/yah, along with a copy of this thesis.

The program loops over the conjugate gradient optimization function. In the

conjugate gradient optimization calculation. It first calculates the cost based on

current estimates of the surface. The gradient function returns the gradient associated

with it. Base on these, a linear search is performed to find a new minimum, and the

cost and gradient are then recalculated to use this new value. This continues until the

predetermined number of iteration run out. During this process the hierarchical basis

conversion functions are used to speed up calculation. Interpolation, filtering and

convolution functions are used to assist the cost and gradient calculation. Reflection

map based on current estimates are generated and compared with the actual reflection

map to guide the convergence.

137



APPENDIX A. DFSS FUNCTIONS 138

dfss.h header file of DFSS functions

dfss.c main DFSS analysis function

conjgrad.c conjugate gradient calculation

cost.c cost calculation

grad.c gradient calculation

hbasis.c hierarchical basis conversion

lsearch.c linear search for conjugate gradient optimization

conv2.c 2-D convolution calculation

cfilter2d.c 2-D computational molecule filtering with bicubic interpolation

domain2d.c 2-D plaid domain generation

interpx.c linear interpolation in one direction.

rmap.c reflection map calculation based c n current estimates.

Table A.I: DFSS functi_m list



Appendix B

DFSS I/O Functions

In this Appendix, I present several example I/O and driver functions needed to build

a DFSS program to analyze and process Viking Space project images. Since I used

Matlab to display and plot the images and the estimated surface, loadmat.c and

savemat.c are used to read and write Matlab files.

The source code and a makefile are made available on ftp.ai.mit.edu(128.52.32.11 ),

in/pub/yan, along with a copy of this thesis.

/ ************************************************************************

* FILE dfss_pds, c *

¢t ¢t

* Depth From Shape from Shading and Stereo Image Analysis Program *

* for PC, Vax, Unix and Macintosh systems. *

* it reads synthetic images in matlab file format and output *

* estimated topography in matlab file format. *

*************************************************************************

#include <stdio.h>

#include <math.h>

#include <malloc.h>

_include <strings.h>

139
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_include <matrix.h>

#include "dfss. h"

void main(int argc, char **argv)

{

char

int

real

matrix

name[20];

mz, nz, type, mrows, ncols, imagf;

*xi, *xr, *X;

ztemp;

20

/* set up global variables */

levels = 7; /* level of hbasis */

cntll= 1.Oe-8;

cnti2 = 1.Oe-16;

cntl3 = 1.Oe-6;

cntl4 = O;

cntl5 = O;

cntl6 = O;

cntl7 = O;

cntl8 = O;

cntl9 = O;

cntllO = O;

cntlll - 1.Oe-8;

cntll2 = 0.1;

cntll3 = 0.0;

cntll4 = 0.0;

/* Termination tolerance for X. */

/* Termination tolerance on F. "/

/* Termination criterion on con_,traint violation. */

/* Algorithm: Line Search Algomthm. */

/* Function value. (Lambda in goal attainment) */

/* Number of Function and Con..traint Evaluations. */

/* Number of Function Gradient Evaluations. */

/* Number of Constraint Evaluations */

/* Number of equality constraints. */

/* Mazimum number of iteratior, s. default, I00 *

/* Min. change in variables for finite diff. grad. */

/* Mar. change in variables for finite diff. grad. */

/* Step length. (Default I or les:_) */

no of vat. */

30

4O

/* get host information and input and output files */

strcpy(innamel, " ");

strcpy(outname, " ");
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if(argo == 1)

usage();

else if (argc "-= 2 && (strncmp(argv[1],"-help",5) == 0 tl

strncmp(argv[1],"-h",2) == 0 [[

strncmp(argv[1],"?", 1) == 0))

usage();

else {

strcpy(innamel, argv[l]);

if (argc =-- 3) strcpy(outname, argv[2]);

if (argc> 3) usage();

)

host = check_host();

get_files(host);

5O

6O

/* readin the image file _/

printf("\nReading in the reflection maps ...... \n");

while (loadmat(infpl, &type, name, &mrows, &ncols, &imagf, _xr, &xi) == O) {

if (strncmp(name, "El", 2) ---- 0) {

el = new matrix(mrows, ncols);

arraytomatrix(el, mrows, ncols, xr);

)

if (strncmp(name, "E2", 2) == 0) {

e2 = new_matrix(mrows, ncols);

array to matrix(e2, mrows, ncols, xr);

}

if (strncmp(name, "z", 1) == O) {

mz = mrows; nz = ncOls;

ztemp = new_matrix(mrows, ncols);

array_to_matrix(ztemp, mrows, ncols, xr);

}

if (strncmp(name, "paxams", 6) == O) {

70

80
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f = *_; b = *(xr + i); zO = *(xr + 2);

psi = *(xr + 3); qsl = *(xr + 4); ps2 = *(xr + 5_; qs2 = *(xr + 6);

vxl = *(xr + 7); vyl = *(xr + 8); vx2 = *(x_r + 9); vy2 = *(xr + 10);

delta = *(x.r + 11);

ztrue = new_matrix(mz - 2, nz - 2); /* strip off the boarder */

matrix_copy_submatrix(ztemp, ztrue, 1, mz - 1, 1, nz - 1);

free_matrix(ztemp);

x = calloc((mz - 2) *(nz - 2), sizeof(double));

matrix to array(ztrue, mz - 2, nz - 2, x);

savemat(outfp, host, "ztrue", mz - 2, nz - 2, 0, x, xi);

free(x);

free matrix(ztrue);

z = new_matrix(mz - 2, nz - 2);

matrixset(z, z0);

/* al,'ocate memory for z */

/* start DFSS analysts *'/

dfss();

/* output the final depth matriz */

x = calloc(NOROWS(el) * NOCOLS(el), sizeof(double));

matrix_to_array(el, NOROWS(el) , NOCOLS(el), x);

savemat(outfp, host, "el", NOROWS(el) , NOCOLS(el) 0, x, xi);

free(x);

x = calloc(NOlZOWS(e2) * NOCOLS(e2), sizeof(double));

matrix_to_array(e2, NOROWS(e2) , NOCOLS(e2), x);

90
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Nsavemat(outfp, host, "e2", , 'OROWS(e2) NOCOLS(e2), 0, x, xi);

free(x);

x = calloc((mz - 2)* (nz - 2), sizeof(double));

matrix to array(z, mz - 2 , nz - 2, x);

savemat(outfp, host, "z", mz - 2 , nz - 2, O, x, xi);

free(x);

/ * clear up and close */

free_matrix(z);

free_matrix(ztrue);

free_matrix(el);

free_matrix(e2);

close(infp 1);

fclose(outfp);

}

/* subroutine get.files - get input, output filenames and open them */

void get_files(int host)

{

if(innamel[0] == ' ') {

printf("\nEnter name of the :file to be DFSS analyzed:

gets (innamel);

}

if (host == 0 I host == 3000) {

if ((infpl = fopen(innamel, "rb")) == NULL) {

printf("kncan't open input file: Xskn °',innamel);

exit(l);

)

)

");

120

130

140

150
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else if (host == 2000 I host == i000) {

if ((infpl = fopen(innamel, "r")) == NULL) {

printf("\ncan't open input file: '/.skn",innamel);

exit(l);

}

/ _ get output file */

if(outname[O] == ' ') {

printf("knEnter name of output _ile:

gets (outname);

}

if (host == 0 [host == 2000) {

}

}

");

if ((outfp = fopen(outname,"wb")) == NULL) {

printf("kncan't open output file:

exit( 1);

else if (host == 1000) {

}

}

Zs\n",outname);

if ((outfp = fopen(outname,"_")) == NULL) {

printf("kncan't open outpul; file: Xs\n",ourname);

exit(l);

160

170

void usage(void)

{

printf("z-only Depth From Shading and Stereo Programkn\n");

printf("INPUT:\tsynthel;ic image in matlab file format .\n");

printf("OUTPUT:\tresul_s in matlab file format\n");

printf("\nCommand line format :\n\n");

printf("dfss_mat [infile] [outfile3 \n");

180
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printf("\tinfile\t - name of synthetic image file.\n");

printf("\toutfile\t - name of DFSS output file.\n");

_include <stdio.h>

#include <math.h>

_include <matrix.h>

#include "df_n .h"

matrix gen_opt(reai *lambda, int *step, int *nsteps, int tot)

{

int i, j;

int r_opt = O;

matrix opt;

matrix steps, a, b, c;

/* temp. counter */

/* count number of elements in opts _'/

/* lambda and step matriz */

/* temp matrizs _/

opt = new_matrix(tot, 2);

for (i = O;i < 5; i++) {

steps = newmatrix(1, nsteps[i]);

for (j = O;j < nsteps[i]; j++) {

elem_set(steps, O, j, (real) j+l);

}

a = new_matrix(nsteps[i], 1);

matrix_set(a, log(lambda[i]));

matrixscalarsub(steps, 1.0, steps);

b = new_matrix(nsteps[i], 1);

matrix_transpose(steps, b);

/* allocate memory for opt matriz */

10

2O
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matrix_scalar_div(b, (real) nsteps[i], b);

c = new_matrix(nsteps[i], 1);

matrixset(c, log(lambda[i+ 1])-log(lamb da[i]));

matrix_mul(b, c, c);

matrix_add(a, c, c);

/* generate opt matrnz 4/

for (j = O;j < nsteps[i]; j++) {

elem_set(opt, r_opt + j, O, exp(elem_ref(c, j, 0)));

elem_set(opt, r_opt + j, 1, (real) step[i]);

}

r opt += nsteps[i];

/* clean up the temp matrit, release memory _'/

free_matrix(steps);

free_matrix(a);

free_matrix(b);

free_matrix(c);

return(opt);

}

3O

4O

5O

* FILE get_host.c *

,1: it

* Check host computer type, *

* for PC, Vat, Unit and Macintosh systems. *

$ *

s it finds out the machine type and byte swap *
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_include <stdio.h>

#include <strings.h>

:if:include <matrix.h>

#include "dr ss. h"

int check_host()

{
char

int

union {

char ichar[2];

short lien;

} onion;

hostname[80];

swap, host, bits, vat;

if (sizeof(var) == 4) bits = 32;

else bits = 16;

onion.ichar[0] = 1;

onion.ichar[1] = 0;

if (onion.ilen == 1) swap = TRUE;

else swap = FALSE;

if (bits == 16 && swap == TRUE) {

host = 0; / _' IBM PC host */

strcpy(hostname,

"Host I - 16 bi_ integers with swapping, no var lea support.");

)

if (bits == 16 && swap == FALSE) {

host = 0;/* Non byte swapped 16 bit host */

strcpy(hostname,

"[lost 2 - 16 bit integers wil;hou'z swapping, no vat aen support.");

)

10

20

3O

40
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if (bits == 32 && swap == TRUE) {

host = 2000;/* VAX host with vat length support */

strcpy(hostname,

"Host 3 - 32 bit integers with swapping.");

if(bits == 32 && swap == FALSE) {

host = 1000;/* OTHER 32-bit host, such as Sun */

strcpy(hostname,

"Host 5 - 32 bit integers withou_ swapping, no vat ten support.");

}

return(host);

5O

4 FILE Ioadmat. *

• C language routine to load a mat_zfrom a MAT-file. *

#include <stdio.h>

typedef struct {

long type; / * type */

long mrows; / _ row dimension 4/

long ncols; /4 column dimension 4/

long imagf; / 4 flag indicating imag part 4/

long namlen;/* name length (including NULL) _/

} Fmatrix;

int loadmat(FILE *fp,int *type,char *pname, int *mrows, int *ncols,

I0
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int *imagf, double **preal. double **pimag)

char *maIloc();

Fmatrix x;

int mn, namlen;

/ * Get Fmatriz structure from file */

if (fread((char *)&x, sizeof(Fmatrix), l, fp)!= l) {

return(l);

}

*type = x.type;

*mrows = x.mrows;

*ncols = x.ncols;

*imagf = x.imagf;

namlen = x.namlen;

mn = x.mrows * x.ncols;

149

20

30

/_ Get matriz name from file */

if (fread(pname, sizeof(char), namlen, fp) != namlen) {

return(l);

}

/* Get Real part of matri_ from file _/

if (!(*preal = (double *)malloc(mn*sizeof(double)))) {

printf("\nError: Variable "coo big to load\n");

return(l);

}

if (fread(*preal, sizeof(double), mn, fp) != mn) {

free(*preal);

return(l);

}

40

5O



rr ,,
APPENDL'( B. DFSS t/O F[,\CTIONS 150

/* Get Imag part o/matrix from file, _f it ezists */

if(x.imagf) {

if (!(*pimag = (double *)malloc(mn*sizeof(double))_) {

printf("\nError: Variable too big to load\a");

free(*preal);

return(I);

}

if (fread(*pimag, sizeof(double), mn, fp) != mn) {

free(*pimag);

free(*preal);

return(i);

}

)

return(O);

60

#include <stdio.h>

typedef struct {

long type; /* type */

long mrows; /* row dimension */

long ncols; /* column dimension _/

long imagf; / * flag indicating imag part _/

long namlen;/* name length (including NULL) */

} Fmatrix;

lO
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void savemat(FILE *fp, int type, char *pname, int mrows, int ncols,

int imagf, double *preal, double *pimag)

Fmatrix x:

int mn: 2O

x.type = type;

x.mrows = mrows;

x.ncols = ncols;

x.imagrf = imagf;

x.namlen = strlen(pname) + l;

mn = x.mrows * x.ncols;

fwrite(&x, sizeof(Fmatrix), 1, fp);

fwrite(pname, sizeof(char), (int)x.namlen, fp);

fwrite(preal, sizeof(double), mn, fp);

if (imagf) {

fwrite(pimag, sizeof(double), mn, fp);

}

3O





Appendix C

The Matrix Library

C.1 Vectors and Matrices

In the following section, I provide some documentation on the functions available in

the matrix library for doing vector and matrix manipulation. The documentation

covers only the basic functions.

The entire library is written in the C programming language and has been running

on Sparc workstations in the AI LAB at MIT, and PCs outside.

In what follows, the library functions deal exclusively with 2-dimensional matrices

and 1-dimensional vectors and do NOT deal with multi-dimensional matrices.

Internally, matrices are represented as two dimensional matrices. A vector of

dimension n is represented as a column vector or an matrix whose shape is n × 1.

The entire library has been written using a typedef which defines the real data

type to be the C double datatype. By redefining this datatype in matrix.h and

recompiling it should be relatively easy to convert the library to single precision if

needed. To use the library the file matrix, h must be included in your C source files.

The library defines (typedefs) many data types the most used of which is the matrix

data type.

The source code and a makefile are made available on ftp.ai.mit.edu(128.52.32.11 ),

152
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in /pub/yan, along with a copy of this thesis.

C.2 Creating and Freeing Matrices

The following function creates and returns an matrix all of whose elements are ini-

tialized to zero.

new_matrix rows, cols

int rows, cols;

This is the routine used internally by all the others.

matrix with the specified number of rows and columns.

Function

This creates and returns an

free_matrix a Function

matrix a;

This routine performs the cleaning up, once you no longer need an matrix. It basically

frees up the storage associated with the specified matrix a. Future references to a

freed matrix will result in erroneous behaviour.

C.3 Accessing Elements within an Matrix

There are many functions to access elements with!n an matrix, the following two of

which are very useful.

elem..set a, i, j, val

matrix a;

int i, j;

real val;

It sets element referred to by a [±, j ] to the real vtl.

Fun ction
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elem_ref a, i, j Function

matrix a;

int i, j;

This returns the element referred to by a[i,j].

These two functions are implemented as C functions and hence may be slow

for some applications. If speed is essential, users can use macros felem_set and

felem_ref with identical arguments as those of elem_set and eIem_.vef.

C.4 Common Operations on Matrices

matrix_add a, b, c

matrix a, b, c;

This adds two matrices together, if they are of the same shape.

matrix c is NULL then the results are stored in matrix b.

Function

If specified result

matrix_sub a, b, c Function

matrix a, b, c;

Subtracts matrix b from a. if they are of the same shape. If specified result matrix c

is NULL then the results are stored in matrix b.

matrix_mul a, b, c Function

matrix a, b, c;

Multiples matrix b from a, if they are of the same shape. If specified result matrix c is

NULL then the results are stored in matrix b. This does NOT do a matrix multiply.

It does something like c[i] = a[il , bill.

matrix_scalar_add

matrix a, b;

real scalarvalue;

a, scalarvalue, b Function
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This adds a scalar value to every element of the specified matrix a. If specified result

matrix b is NULL, then the result is stored in matrix a;

matrix_scalar_sub a, scalarvalue, b Function

matriz a, b;

real scalarvalue;

This subtracts a scalar value from every element of the specified matrix a. If specified

result matrix b is NULL, then the result is stored in matrix a;

matrix_scalar_mul a, scalarvalue, b Function

matrix a, b;

real scalarvalue;

This multiplies every element of the specified matrix a by the specified scalar value.

If specified result matrix b is NULL, then the result is stored in matrix a;

matrix_scalar_div a, scalarvalue, b Function

matrix a, b;

real scalarvalue;

This divides every element of the specified matrix a by the specified scalar value. If

specified result matrix b is NULL, then the result is stored in matrix a;

matrix_scalar_shift_add a, scalar, b Function

matriz a, b;

real scalarvalue;

This routine is like matrix_scalar_add only it shifts the matrix b by the specified

amount instead of clobbering it with the result. In short doing a
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matrix_scalar_shift_add(a, 3.0, b);

is equivalent to writing (in pseudo-code)

for all_elements_of b

b[i] = b[i] + a[i] + 3.0;

Both matrices should be of the same shape.

•matrix_scalar_shift_sub a, scalar, b Function

matriz a, b;

real scalarvalue;

This shifts the elements of matrix a. down instead of up as the add routine does.

matrix_scalar_shift_mul

matriz a, b;

real scalarvalue;

This is equivalent to the following:

a, scalar, b Function

for all_elements_of b

b[i] = b[i] + a[i] * scalar;

matrix..scalar_shift_div

matriz a, b;

real scalarvalue;

This is equivalent to the following:

a, scalar, b

for all_elements_of b

b[±] = b[±] + a[i] / scalar;

matrix_eqinternal

matriz z, y;

z, y, tol

Function

Function



APPENDIX C. THE MATRIX LIBRARY 157

real tol;

This function checks if two matrices are equal on an element by element basis. The

third argument specifies a tolerance value that is to be used in the comparison. It

returns 1 if the two matrices are equal within the specified tolerance and 0 if not.

matrix_eq z, y Function

matrix z, y;

This is really equal to a function call to the previous function with a tolerance value

of 0.00001.

matrix_norm_one a Function

matrix a;

Computes the maximum column sum of the specified matrix (also known as the 1-

norm.

matrix__norm__infinity a

matrix a;

Computes the maximum row sum of the specified matrix.

norm.

Function

(also known as the inf-

matrix_norm__frob enius a

matrix a;

Computes and returns the frobenius norm of the given matrix.

Function

matrix_minmax a, minval, mazval Function

matrix a;

real e'minval;

real *maxval;

This function computes and returns the maximum value and minimum value stored

in the matrix in the result pointers passed in as the second and third arguments.
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matrix_max a, row, col Function

register matrix a;

int *row, *col;

This function returns the maximum value in the matrix and sets the passed in row

and col arguments to be the row and column index of the element that corresponds

to this maximum value.

matrix_average a

register matrix a;

This function returns the average value of all the elements in an matrix.

Function

matrix_multiply a, b, c Function

matrix a, b, c;

This is the normal matrix multiply routine. The result matrix c must be specified,

and must be of the right dimensions.

matrix_multiply_new a, b Function

matrix a, b;

Returns a new matrix which is the result of matrix a post multiplied by b. It is upto

the programmer to free the storage allocated to this matrix.

matrix_multiply_destructive a, b Function

matrix a, b;

This routine destructively modifies the matrix b to contain a post-multiplied by b.

matrix_.invert a, b

matrix a, b; This is the familiar matrix inversion routine.

trices now. The inverse of a is stored in b.

Function

Handles only square ma-

matrix_multiple_solve a, b, c Function
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